We can create a parabola equation of the trajectory using
the vertex form:
y = a (x – h)^2 + k
The center is at h and k, where h and k are the points at
the maximum height so:
h = 250
k = 120
Therefore:
y = a (x – 250)^2
+ 120
At the initial point, x = 0, y = 0, so we can solve for
a:
0 = a (0 – 250)^2 + 120
0 = a (62,500) + 120
a = -0.00192
So the whole equation is:
y = -0.00192 (x – 250)^2 + 120
So find for y when the golf ball is above the tree, x =
400:
y = -0.00192 (400 - 250)^2 + 120
y = 76.8 ft
So the ball cleared the tree by:
76.8 ft – 60 ft = 16.8 ft
Answer:
16.8 ft
To find the dimensions you can just factor the equation...
x^2+4x-21
x^2-3x+7x-21
x(x-3)+7(x-3)
(x+7)(x-3) and this is equal to LW or WL
And note that x>3 for any possible solution.
Answer:
Option (D)
Step-by-step explanation:
Given polynomial is,
2x³ - 3x² - 3x + 2
If (x - 2) is the factor of the given polynomial,
By synthetic division we can get the other factor.
2 | 2 -3 -3 2
<u> 4 2 -2 </u>
2 1 -1 0
Therefore, other factor of the given polynomial is (2x² + x - 1)
Now (2x² + x - 1) = 2x² + 2x - x - 1
= 2x(x + 1) -1(x + 1)
= (2x - 1)(x + 1)
Therefore, factors of the given polynomial other than (x - 2) are (2x - 1) and (x + 1)
Option (D) will be the answer.
As of 12:04 EST U.S.
$1=<span>112.624847Yen
So:
100USD(112.624847Y/1USD)=11262.62 Yen</span>
Step 1
<u>Find the measure of angle x</u>
we know that
If ray NP bisects <MNQ
then
m<MNQ=m<PNM+m<PNQ ------> equation A
and
m<PNM=m<PNQ -------> equation B
we have that
m<MNQ=(8x+12)°
m<PNQ=78°
so
substitute in equation A
(8x+12)=78+78-------> 8x+12=156------> 8x=156-12
8x=144------> x=18°
Step 2
<u>Find the measure of angle y</u>
we have
m<PNM=(3y-9)°
m<PNM=78°
so
3y-9=78------> 3y=87------> y=29°
therefore
<u>the answer is</u>
the measure of x is 18° and the measure of y is 29°