At the start, the tank contains
(0.02 g/L) * (1000 L) = 20 g
of chlorine. Let <em>c</em> (<em>t</em> ) denote the amount of chlorine (in grams) in the tank at time <em>t </em>.
Pure water is pumped into the tank, so no chlorine is flowing into it, but is flowing out at a rate of
(<em>c</em> (<em>t</em> )/(1000 + (10 - 25)<em>t</em> ) g/L) * (25 L/s) = 5<em>c</em> (<em>t</em> ) /(200 - 3<em>t</em> ) g/s
In case it's unclear why this is the case:
The amount of liquid in the tank at the start is 1000 L. If water is pumped in at a rate of 10 L/s, then after <em>t</em> s there will be (1000 + 10<em>t</em> ) L of liquid in the tank. But we're also removing 25 L from the tank per second, so there is a net "gain" of 10 - 25 = -15 L of liquid each second. So the volume of liquid in the tank at time <em>t</em> is (1000 - 15<em>t </em>) L. Then the concentration of chlorine per unit volume is <em>c</em> (<em>t</em> ) divided by this volume.
So the amount of chlorine in the tank changes according to

which is a linear equation. Move the non-derivative term to the left, then multiply both sides by the integrating factor 1/(200 - 5<em>t</em> )^(5/3), then integrate both sides to solve for <em>c</em> (<em>t</em> ):


![\dfrac{\mathrm d}{\mathrm dt}\left[\dfrac{c(t)}{(200-3t)^{5/3}}\right]=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5B%5Cdfrac%7Bc%28t%29%7D%7B%28200-3t%29%5E%7B5%2F3%7D%7D%5Cright%5D%3D0)


There are 20 g of chlorine at the start, so <em>c</em> (0) = 20. Use this to solve for <em>C</em> :

![\implies\boxed{c(t)=\dfrac1{200}\sqrt[3]{\dfrac{(200-3t)^5}5}}](https://tex.z-dn.net/?f=%5Cimplies%5Cboxed%7Bc%28t%29%3D%5Cdfrac1%7B200%7D%5Csqrt%5B3%5D%7B%5Cdfrac%7B%28200-3t%29%5E5%7D5%7D%7D)
Answer:
Row 1 = 2 white flowers
Row 2 = 3 white flowers
Row 3 = 4 white flowers
Step-by-step explanation:
Instead of having 1.5 times as many pink flowers as white flowers, Molly has decided to plant a garden with twice as many pink flowers as white flowers per row. If she plants 3 rows, with 4, 6, and 8 pink flowers, how can you find the number of white flowers in each of those rows?
Let
White flowers = x
Pink flowers = 2x
Molly plants 3 rows with 4, 6 and 8 pink flowers
Number of white flowers in each row is
Row 1
Pink flowers = 4
2x = 4
Divide both sides by 2
x= 2
White flowers = 2 in row 1
Row 2
Pink flowers = 6
2x=6
Divide both sides by 2
x= 3
White flowers in row 2 = 3
Row 3
Pink flowers = 8
2x=8
Divide both sides by 2
x= 4
White flowers in row 3 = 4
Therefore, the number of white flowers in each rows are 2, 3 and 4 respectively
K(-1+1.01)+0.03=-2.45-1.81k
0.01k+1.81k=-0.03-2.45
1.82k=-2.42
k=-2.45\1.82=1.3
Answer:
B
Step-by-step explanation:
<h3>bc I took it and got it right
periodt</h3>