<span>To draw an acceptable lewis structure we must first determine the number of valance elections of the molecule in the ground state, and then adjust the molecule to refect the molecular radial cation after one or more of the electrons have been removed from its outter most shell. The lewis structure should refect the best configuation with good resonance and stability.</span>
<span>We can use
the heat equation,
Q = mcΔT </span>
<span>Where Q is
the amount of energy transferred (J), m is the mass of the substance
(kg), c is
the specific heat (J g</span>⁻¹ °C⁻<span>¹) and ΔT is
the temperature difference (°C).</span>
Let's assume that the finale temperature is T.
Q = 1200 J
<span>
m = 36 g
c = 4.186 J/g °C</span>
ΔT = (T -
22)
By applying
the formula,
1200 J = 36 g
x 4.186 J/g °C x (T - 22)
(T - 22) = 1200 J / (36 g x 4.186 J/g °C)
(T - 22) = 7.96 °C
T = (7.96 + 22) °C = 29.96 °C
T = 30 °C
Hence,
the final temperature is 30 °C.
11.2L/22.4L (STP value) x 1 mol of CH4 x 16.04 g of CH4 = 8.2 g
Answer:
The rms speed of the gas atoms after 3600 J of heat energy is added to the gas = 1150 m/s.
Explanation:
Mass of 3 moles of Helium = 3 moles × 4.00 g/mol = 12.00 g = 0.012 kg
The initial average kinetic energy of the helium atoms = (1/2)(m)(u²)
where u = initial rms speed of the gas = 850 m/s
Initial average kinetic energy of the gas = (1/2)(0.012)(850²) = 4335 J
Then, 3600 J is added to the gas,
New kinetic energy of the gas = 4335 + 3600 = 7935 J
New kinetic energy of Helium atoms = (1/2)(m)(v²)
where v = final rms speed of the gas = ?
7935 = (1/2)(0.012)(v²)
v² = (7935×2)/0.012
v² = 1,322,500
v = 1150 m/s
Hence, the rms speed of the gas atoms after 3600 J of heat energy is added to the gas = 1150 m/s.
Hope this Helps!!!
This is an incomplete question, the given sketch is shown below.
Answer : The name of given unit cell is, FCC (face-centered cubic unit cell)
Explanation :
Unit cell : It is defined as the smallest 3-dimensional portion of a complete space lattice which when repeated over the and again in different directions produces the complete space lattice.
There are three types of unit cell.
- SCC (simple-centered cubic unit cell)
- BCC (body-centered cubic unit cell)
- FCC (face-centered cubic unit cell)
In SCC, the atoms are arranged at the corners.

The number of atoms of unit cell = Z = 1
In BCC, the atoms are arranged at the corners and the body center.

The number of atoms of unit cell = Z = 2
The given unit cell is, FCC because the atoms are arranged at the corners and the center of the 6 faces.

The number of atoms of unit cell = Z = 4
Thus, the name of given unit cell is, FCC (face-centered cubic unit cell)