Answer : The final temperature would be, 791.1 K
Explanation :
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= 
= rate constant at
= 
= activation energy for the reaction = 265 kJ/mol = 265000 J/mol
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature = ?
Now put all the given values in this formula, we get:
![\log (\frac{4\times K_1}{K_1})=\frac{265000J/mol}{2.303\times 8.314J/mole.K}[\frac{1}{733K}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B4%5Ctimes%20K_1%7D%7BK_1%7D%29%3D%5Cfrac%7B265000J%2Fmol%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B733K%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)

Therefore, the final temperature would be, 791.1 K
Answer:
Gd → Gd⁺ + 1e⁻, Gd⁺ → Gd⁺² + 1e⁻, Gd⁺² → Gd⁺³ + 1e⁻
Explanation:
The ionization energy is the energy necessary to remove one electron of the atom, transforming it in a cation. The first ionization energy is the energy necessary to remove the first electron, the second energy, to remove the second electron, and then successively.
Thus, for gadolinium (Gd)
Fisrt ionization:
Gd → Gd⁺ + 1e⁻
Second ionization:
Gd⁺ → Gd⁺² + 1e⁻
Third ionization:
Gd⁺² → Gd⁺³ + 1e⁻
Letter d, because they are both alkali metals (group one)
Using charles law
v1/t1=v2/t2
v1=49ml
v2=74
t1=7+273=280k
t2=?
49/280=74/t2
0.175=74/t2 cross multiply
0.175t2=74
t2=74/0.175
t2=422k or 149celcius