Answer:
(1) 0.10 (2) 17.8 g
Explanation:
Since the reaction ratio is 1:1 what we need is to convert the given masses to moles and you will have the answer:
MW anthracene = 178.23 g/mol
MW maleic anhydride = 98.06 g/mol
a) mass anthracene = 178 mg x 1 g/ 1000 mg = 0.178 g anthracene
Moles anthracene = 0.178 g anthracene/ 178.23 g/mol
= 0.001 mol anthracene
0.001 mol anthracene x 1 mol maleic acid/mol anthracene
= 0.001 mol maleic anhydride
mass maleic anhydride = 0.001 mol x 98.06 g/mol = 0.10 g
b) moles maleic anhydride = 9.8 g/ 98.06 g/mol = 0.099 moles
0.099 moles maleic anhydride x 1 mol anthracene/mol maleic anhydride =
0.099 mol anthracene
g anthracene = 0.10mol x 178 g/mol = 17.8 g
Answer:
Explanation:
<u>1) Balanced chemical equation:</u>
<u>2) Mole ratio:</u>
- 2 mol S : 3 mol O₂ : 2 mol SO₃
<u>3) Limiting reactant:</u>
n = 6.0 g / 32.0 g/mol = 0.1875 mol O₂
n = 7.0 g / 32.065 g/mol = 0.2183 mol S
Actual ratio: 0.1875 mol O₂ / 0.2183 mol S =0.859
Theoretical ratio: 3 mol O₂ / 2 mol S = 1.5
Since there is a smaller proportion of O₂ (0.859) than the theoretical ratio (1.5), O₂ will be used before all S be consumed, and O₂ is the limiting reactant.
<u>4) Calcuate theoretical yield (using the limiting reactant):</u>
- 0.1875 mol O₂ / x = 3 mol O₂ / 2 mol SO₃
- x = 0.1875 × 2 / 3 mol SO₃ = 0.125 mol SO₃
<u>5) Yield in grams:</u>
- mass = number of moles × molar mass = 0.125 mol × 80.06 g/mol = 10.0 g
<u>6) </u><em><u>Percent yield:</u></em>
- Percent yield, % = (actual yield / theoretical yield) × 100
- % = (7.9 g / 10.0 g) × 100 = 79%
Remember: heat lost = heat gained
When calculating heat loss or gain, remember
mass*(spec heat cap)*(change in T)
The unknown loses heat- we don't know the spec heat cap, so we'll call it x.
The water gains. I've omitted the units, but always use when solving problems on your own.
75*x*(96.5-37.1) = 1150*4.184*(37.1-25)
<span>
Now it's all set up- use algebra to get x, the spec heat cap of the unk in J/g*degC
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Hello!
Calvin told Marie that they could continue to add solute until the reached 40 grams because the solution was still unsaturated.
Unsaturated solutions are those in which the solvent (in this case water) can still dissolve more solute (in this case KNO₃) at the given pressure and temperature. This can be seen visually when adding more solute doesn't result in the presence of grains of solids that settle in the bottom of the flask. That happens because the rate of dissolving is higher than the rate of crystallization.
Have a nice day!
Arkeisha is correct because the fluid in an alkaline battery has a ph between 7.1 and 14.0