Answer:
The temperature of the gas is 1197.02 K
Explanation:
From ideal gas law;
PV = nRT
Where;
P is the pressure of the gas
V is the volume of the gas
R is ideal gas constant = 8.314 L.kPa/mol.K
T is the temperature of the gas
n is the number of moles of gas
Volume of the gas in the cylindrical container = πr²h
Given;
r = 6/2 = 3 cm = 0.03 m
h = 11 cm = 0.11 m
V = π × (0.03)² × 0.11 = 3.11 × 10⁻⁴ m³ = 0.311 L
number of moles of oxygen gas = Reacting mass / molar mass


Therefore, the temperature of the gas is 1197.02 K
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
Answer:
113.7
Explanation:
maximum distance (s) = 8.9 km
reference intensity (I0) = 1 x 10^{-12} W/m^{2}
power of a juvenile howler monkey (p) = 63 x 10^{-6} W
distance (r) = 210 m
intensity (I) = power/area
where we assume the area of a sphere due to the uniformity of the output in all directions
area = 4π
= 4π x
= 554,176.9 m^{2}
intensity (I) = 
therefore the desired ratio I/I0 =
= 113.7
This type of listening response is called back-channel signal. This allows the speaker to know that the listener is attentive or willing to engage a conversation between them. It is shown through short utterances, facial expressions, head nods and others.