answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LuckyWell [14K]
2 years ago
5

A child's toy consists of a m = 36 g monkey suspended from a spring of negligible mass and spring constant k. When the toy monke

y is first hung on the spring and the system reaches equilibrium, the spring has stretched a distance of x = 11.7 cm. This toy is so adorable you pull the monkey down an additional d = 5.7 cm from equilibrium and release it from rest, and smile with delight as it bounces playfully up and down.
Part (a) Using the given information, determine the spring constant, k, in Newtons per meter, of the spring.

Part (b) Draw the free-body diagram that best represents the forces acting on the monkey as you are pulling ti down, immediately before you let go.

Part (c) Calculate the potential energy, E
b
o
t
t
o
m
, in joules, stored in the stretched spring immediately before you release it.

Part (d) Assume that the system has zero gravitational potential energy at the lowest point of the motion. Derive an expression for the total mechanical energy, E
e
q
u
i
l
i
b
r
i
u
m
, of the system as the monkey passes through the equilibrium position in terms of m, x, d, g, k and the speed of the monkey, v
e
.

Physics
1 answer:
kolezko [41]2 years ago
8 0

Answer:

Part A - 3N/m

Part B - see attachment

Part C - 4.9 × 10-³J

Part D - E = 1/2kd² + 1/2mv² + mgh

Explanation:

This problem requires the knowledge of simple harmonic motion for cimplete solution. To find the spring constant in part A the expression relating the force applied to a spring and the resulting stretching of the spring (hooke's law) is required which is F = kx.

The free body diagram can be found in the attachment. Fp(force of pull), Ft(Force of tension) and W(weight).

The energy stored in the pring as a result of the stretching of d = 5.7cm is 1/2kd².

Part D

Three forces act on the spring-monkey system and they do work in different forms: kinetic energy 1/2mv² , elastic potential

energy due to the restoring force in the spring or the tension force 1/2kd², and the gravitational potential energy mgh of the position of the system. So the total energy of the system E = 1/2kd² + 1/2mv² + mgh.

You might be interested in
A carbon-dioxide laser emits infrared light with a wavelength of 10.6 μm. What is the length of a tube that will oscillate in th
alex41 [277]

Answer:

The length of a tube and number of rounds are 0.848 m and 1.77\times10^{8}\ trip\ per\ second.

Explanation:

Given that,

Wavelength \lambda= 10.6\mu m

m = 160000

We need to calculate the length

Using formula of wavelength

Laser tube behave like closed pipe

m\dfrac{\lambda}{2}=L

L=160000\times\dfrac{10.6\times10^{-6}}{2}

L=0.848\ m

Distance traveled by pulse of light in one back and fourth trip

d=2L

d=2\times0.848

d=1.696\ m

We need to calculate the time

Using formula for time

t = \dfrac{d}{c}

t=\dfrac{1.696}{3\times10^{8}}

t=5.653\times10^{-9}\ s

We need to calculate the number of round

Using formula of number of round

N=\dfrac{1}{t}

N= \dfrac{1}{5.653\times10^{-9}}

N=1.77\times10^{8}\ trip\ per\ second

Hence, The length of a tube and number of rounds are 0.848 m and 1.77\times10^{8}\ trip\ per\ second.

7 0
2 years ago
You are using a rope to lift a 14.5 kg crate of fruit. Initially you are lifting the crate at 0.500 m/s. You then increase the t
lina2011 [118]

Answer:

W = 172.5 J

Explanation:

given,                                    

mass of the fruit crate = 14.5 kg

initial velocity to lift = 0.500 m/s

increase in the tension = 150 N

lift of crate = 1.15 m                  

work done by the tension = ?        

work done  = force x displacement

W = F s cos θ                                

θ = 0°                                    

W = F s x cos 0                                  

W = 150 x 1.15 x 1                

W = 172.5 J                                      

Work done on the crate by the tension force = W = 172.5 J

5 0
2 years ago
Rock X is released from rest at the top of a cliff that is on Earth. A short time later, Rock Y is released from rest from the s
frosja888 [35]

Answer:

C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀)  we see that for the same t v₁> v₂

Explanation:

You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.

Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.

Stone 1

    y₁ = v₀₁ t + ½ g t²

    y₁ = 0 + ½ g t²

Rock2

It comes out a little later, let's say a second later, we can use the same stopwatch

     t ’= (t-t₀)

    y₂ = v₀₂ t ’+ ½ g t’²

    y₂ = 0 + ½ g (t-t₀)²

    y₂ = + ½ g (t-t₀)²

Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to

    S = y₁ -y₂

    S = ½ g t²– ½ g (t-t₀)²

    S = ½ g [t² - (t²- 2 t to + to²)]  

    S = ½ g (2 t t₀ - t₀²)

    S = ½ g t₀ (2 t -t₀)

This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.

For t <to.  The rock y has not left and the distance increases

For t> = to.  the ratio (2t/to-1)> 1 therefore the distance increases as time

passes

Now we can analyze the different statements

A) false. The difference in height increases over time

B) False S increases

C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t   v₁> v₂

3 0
2 years ago
Does a fish appear closer or farther from a person wearing swim goggles with an air pocket in front of their eyes than the fish
Sunny_sXe [5.5K]

Answer:

In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer

In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away

Explanation:

This exercise can be analyzed with the law of refraction that establishes that a ray of light when passing from one medium to another with a different index makes it deviate from its path,

      n₁ sin θ₁ = n₂ sin θ₂

where n₁ and n₂ are the refractive indices of the incident and refracted means and the angles are also for these two means.

In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer

1 sin θ₁ = 1.33 sin θ₂

        θ₂ = sin⁻¹ ( 1/1.33 sin θ₁)

In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away

4 0
2 years ago
An 80-g particle moving with an initial speed of 50 m/s in the positive x direction strikes and sticks to a 60-g particle moving
liubo4ka [24]

The collision is a form of inelastic collision because the it forms a single mass after is collides. So it can be solve by momentum balance

( 0.08 kg * 50 m/s ) + ( 0.06 kg * 50 m/s) = ( 0.08 + 0.06 kg ) v

V = 50 m/s

So the kinetic energy lost is

KE = 0.5 (50 m/s)^2) *( 0.14 – 0.08kg )

KE = 75 J

8 0
2 years ago
Other questions:
  • A floating ice block is pushed through a displacement d = (14 m) i hat - (11 m) j along a straight embankment by rushing water,
    15·1 answer
  • two people, each with a mass of 70 kg, are wearing inline skates and are holding opposite ends of a 15m rope. One person pulls f
    14·1 answer
  • An experiment is conducted in which red light is diffracted through a single slit. Listed below are alterations made, one at a t
    6·1 answer
  • A certain plucked string produces a fundamental frequency of 150 hz. Which frequency is not one of the harmonics produced by tha
    8·1 answer
  • Bullets from two revolvers are fired with the same velocity. The bullet from gun #1 is twice as heavy as the bullet from gun #2.
    6·1 answer
  • The speed of sound in air is 320 ms-1 and in water it is 1600 ms-1. It takes 2.5 s for sound to reach a certain distance from th
    7·1 answer
  • In the sport of curling, large smooth stones are slid across an ice court to land on a target. Sometimes the stones need to move
    12·1 answer
  • Listed in the Item Bank are key terms and expressions, each of which is associated with one of the columns. Some terms may displ
    15·2 answers
  • An astronaut stands on the surface of an asteroid. The astronaut then jumps such that the astronaut is no longer in contact with
    6·1 answer
  • Water runs through a plumbing with a flow of 0.750m3/s and arrives to every exit of a fountain. At what speed will the water com
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!