answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vaselesa [24]
1 year ago
11

A 0.025-kg block on a horizontal frictionless surface is attached to an ideal massless spring whose spring constant is The block

is pulled from its equilibrium position at x = 0.00 m to a displacement x = +0.080 m and is released from rest. The block then executes simple harmonic motion along the horizontal x-axis. When the displacement is what is the kinetic energy of the block?
Physics
1 answer:
DerKrebs [107]1 year ago
3 0

Complete Question

A 0.025-kg block on a horizontal frictionless surface is attached to an ideal massless spring whose spring constant is 150 N/m. The block is pulled from its equilibrium position at x = 0.00 m to a displacement x = +0.080 m and is released from rest. The block then executes simple harmonic motion along the horizontal x-axis. When the displacement is x = 0.024 m, what is the kinetic energy of the block?

Answer:

The kinetic energy is  KE = 0.4368\  J

Explanation:

From the question we are told that

   The mass of the block is m= 0.025\ kg

   The spring constant is k = 150 N/m

   The length of first  displacement  is x_1 = 0.80 \ m

     The length of first  displacement  is x_2 = 0.024 \ m

At the x_2 the kinetic energy is mathematically evaluated as

     KE  = \Delta E

Where \Delta E is the change in energy stored on the spring which is mathematically represented as

            \Delta E = \frac{1}{2} k (x_1 ^2 - x_2^2)

=>        KE = \frac{1}{2} k (x_1 ^2 - x_2^2)

Substituting value

          KE = \frac{1}{2} * 150 *  (0.08^2 - 0.024^2)

          KE = 0.4368\  J

   

You might be interested in
A 15.0-gram lead ball at 25.0°C was heated with 40.5 joules of heat. Given the specific heat of lead is 0.128 J/g∙°C, what is th
mr Goodwill [35]

Answer:

T=4985.5^{\circ}K

Explanation:

The equation that relates heat Q with the temperature change T-T_0 of a substance of mass <em>m </em>and specific heat <em>c </em>is Q=mc(T-T_0).

We want to calculate the final temperature <em>T, </em>so we have:

T=\frac{Q}{mc}+T_0

Which for our values means (in this case we do not need to convert the mass to Kg since <em>c</em> is given in g also and they cancel out, but we add 273^{\circ} to our temperature in ^{\circ}C to have it in ^{\circ}K as it must be):

T=\frac{Q}{mc}+T_0=\frac{40.5J}{(15g)(0.128J/g^{\circ}C)}+(298^{\circ}K)=4985.5^{\circ}K

3 0
1 year ago
Bradley gets an x-ray at a radiology clinic that employs its own technologists and radiologists. Would the coder at the clinic r
KengaRu [80]

Answer:

Explanation:

If Bradley examination was done and interpreted in the same facility, the radiologist code is used example- procedure code 72100- Radiologic examination, spine, lumbosacral, 2 or 3 views is reported.

if the X-ray was taken by Dr X but Dr X does not read or interpret the image but forward it to the radiologist for initial report, then a 26- modifier is used. E.g A reports by the technologist would be, procedure code 72050-Radiologic examination, spine, cervical, 2 or 3

views or 72050- TC in certain situations and the consulting radiologist would report 72050-26.

if Bradley’s x-ray were sent to an independent radiologist for interpretation, then the procedure code 76140 is used in reporting.

8 0
1 year ago
Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight. Use this co
natima [27]

Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight is given below.

Explanation:

Measure unstretched length of spring, L.  E.g. L = 0.60m.

Set mass to a convenient value (e.g. m = 0.5kg).

Hang mass.

Measure new spring length, L'. E.g. L' = 0.70m.

Calculate extension: e = L' - L = 0.70 – 0.60 = 0.10m

Use mg = ke (in equilibrium weight = tension)

k = mg/e

Don't know what value you are using for example.  Suppose it is 10N/kg (same thing as 10m/s²).

k = 0.5*10/0.10 = 50 N/m

Repeat for a few different masses.  (L always stays the same.)

Take the average of your k values.

5 0
1 year ago
Read 2 more answers
The initial velocity of a 4.0-kg box is 11 m/s, due west. After the box slides 4.0 m horizontally, its speed is 1.5 m/s. Determi
ankoles [38]

Answer:

F = - 59.375 N

Explanation:

GIVEN DATA:

Initial velocity = 11 m/s

final velocity = 1.5 m/s

let force be F

work done =  mass* F = 4*F

we know that

Change in kinetic energy = work done

kinetic energy = = \frac{1}{2}*m*(v_{2}^{2}-v_{1}^{2})

kinetic energy = = \frac{1}{2}*4*(1.5^{2}-11^{2}) = -237.5 kg m/s2

-237.5 = 4*F

F = - 59.375 N

7 0
2 years ago
Scenario A: 120 J of work is done in 6 s. Scenario B: 160 J of work is done in 8 s. Scenario C: 200 J of work is done in 10 s. W
hodyreva [135]
Using the equation P = W/t to solve your problem . 

Thus the answer is all of them use the same amount of power. 20 J.  
8 0
1 year ago
Read 2 more answers
Other questions:
  • A train travels a distance of 1,2 km between two stations with an average velocity of 43.2 km/h. During it's motion, at the time
    10·1 answer
  • A 68 kg hiker walks at 5.0 km/h up a 9% slope. The indicated incline is the ratio of the vertical distance and the horizontal di
    11·1 answer
  • A crane with output power of 200W will lift a 600N object a vertical distance of 4.0 meters in seconds
    10·1 answer
  • A 3.5-cm radius hemisphere contains a total charge of 6.6 × 10–7
    14·1 answer
  • The steel plate is 0.3 m thick and has a density of 7850 kg&gt;m3 . determine the location of its center of mass. also find the
    5·1 answer
  • Which correctly identifies the parts of a transverse wave? A: crest B: amplitude C: wavelength D: trough A: trough B: amplitude
    10·2 answers
  • Fatima is watching her pet cat, Winter, napping in the sun. Fatima is curious about the heart rate of Winter when she is napping
    8·2 answers
  • Calculate the time taken by the light to pass through a nucleus of diameter 1.56 10 -16 m. (speed of light is 3 10 8 m/s)
    10·1 answer
  • Describe how electromagnetic radiation can ionise an atom. 2 marks
    14·1 answer
  • Three crates with various contents are pulled by a force Fpull=3615 N across a horizontal, frictionless roller‑conveyor system.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!