Answer:
a) E=228391.8 N/C
b) E=-59345.91N/C
Explanation:
You can use Gauss law to find the net electric field produced by both line of charges.

Where E1 and E2 are the electric field generated at a distance of r1 and r2 respectively from the line of charges.
The net electric field at point r will be:

a) for y=0.200m, r1=0.200m and r2=0.200m:
![E=\frac{1}{2\pi(8.85*10^{-12}C^2/Nm^2)}[\frac{4.80*10^{-6}C}{0.200m}-\frac{2.26*10^{-6}C}{0.200m}}]=228391.8N/C](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B1%7D%7B2%5Cpi%288.85%2A10%5E%7B-12%7DC%5E2%2FNm%5E2%29%7D%5B%5Cfrac%7B4.80%2A10%5E%7B-6%7DC%7D%7B0.200m%7D-%5Cfrac%7B2.26%2A10%5E%7B-6%7DC%7D%7B0.200m%7D%7D%5D%3D228391.8N%2FC)
b) for y=0.600m, r1=0.600m, r2=0.200m:
![E=\frac{1}{2\pi(8.85*10^{-12}C^2/Nm^2)}[\frac{4.80*10^{-6}C}{0.600m}-\frac{2.26*10^{-6}C}{0.200m}}]=-59345.91N/C](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B1%7D%7B2%5Cpi%288.85%2A10%5E%7B-12%7DC%5E2%2FNm%5E2%29%7D%5B%5Cfrac%7B4.80%2A10%5E%7B-6%7DC%7D%7B0.600m%7D-%5Cfrac%7B2.26%2A10%5E%7B-6%7DC%7D%7B0.200m%7D%7D%5D%3D-59345.91N%2FC)
Answer:
M = 0.730*m
V = 0.663*v
Explanation:
Data Given:

Conservation of Momentum:

Energy Balance:

Substitute Eq 2 into Eq 1

Using Eq 1

Answer:
See explanation
Explanation:
First, in order for you to understand, remember the basic concept of meniscus in graduated cylinder.
<em>"The meniscus is the curve seen at the top of a liquid in response to its container. The meniscus can be either concave or convex, depending on the surface tension of the liquid and its adhesion to the wall of the container".</em>
Now, according to this definition, and for water, the reading of the volume must be donde at the bottom of the curve of the meniscus. This is because the water gives a concave curve.
If you read it and matches the height of water, you are getting two results:
One, get an accurate value or volume, because it's been done at eye level.
The second fact is that when you do the reading this way, The total pressure is made equal to the atmospheric pressure by adjusting the height of the cylinder until the water level is equal.
B. The hormone erythropoeitin increases the production of red blood cells when oxygen levels are low.
Answer:
<h2>
187,500N/m</h2>
Explanation:
From the question, the kinectic energy of the train will be equal to the energy stored in the spring.
Kinetic energy = 1/2 mv² and energy stored in a spring E = 1/2 ke².
Equating both we will have;
1/2 mv² = 1/2ke²
mv² = ke²
m is the mass of the train
v is the velocity of then train
k is the spring constant
e is the extension caused by the spring.
Given m = 30000kg, v = 4 m/s, e = 4 - 2.4 = 1.6m
Substituting this values into the formula will give;
30000*4² = k*1.6²

The value of the spring constant is 187,500N/m