Answer:
The final volume is 39.5 L = 0.0395 m³
Explanation:
Step 1: Data given
Initial temperature = 200 °C = 473 K
Volume = 0.0250 m³ = 25 L
Pressure = 1.50 *10^6 Pa
The pressure reduce to 0.950 *10^6 Pa
The temperature stays constant at 200 °C
Step 2: Calculate the volume
P1*V1 = P2*V2
⇒with P1 = the initial pressure = 1.50 * 10^6 Pa
⇒with V1 = the initial volume = 25 L
⇒with P2 = the final pressure = 0.950 * 10^6 Pa
⇒with V2 = the final volume = TO BE DETERMINED
1.50 *10^6 Pa * 25 L = 0.950 *10^6 Pa * V2
V2 = (1.50*10^6 Pa * 25 L) / 0.950 *10^6 Pa)
V2 = 39.5 L = 0.0395 m³
The final volume is 39.5 L = 0.0395 m³
Answer: HYDROGEN BONDS
Explanation:
Water molecules attract each other happily thanks to their polarity. A hydrogen atom plus end associates an oxygen atom minus end.
These attractions are an example of hydrogen bonds, weak interactions forming between a partially positive charged hydrogen and a more electronegative atom like oxygen. The hydrogen atoms involved in bonding with hydrogen need to be bound to electronegative atoms such as Oxygen and fluorine
The ionic character of any compound depend on the lattice energy as well as the electronegativity of element present in that compound.
More would be the lattice energy more would be ionic nature of that compound.
The lattice energy of any compound is inversely proportional to the ionic radii cation and anion.
In given case the ionic radii of oxide in both oxides would be equal therefore the lattice energy only depend on the ionic radii of cation.
As the radii of Magnesium less then radii of lithium therefore lattice energy of Magnesium oxide would be more than lithium oxide.
Hence, MgO would be more ionic in nature than 
If it is heated while it is being compressed or held inside a container as such, the pressure build up while in the container and the pressure can become so much that the container will burst.
Answer:
A = 679.2955 ppm
Explanation:
In this case, we already know that 64Cu has a half life of 12.7 hours. The expression to use to calculate the remaining solution is:
A = A₀ e^-kt
This is the expression to use. We have time, A₀, but we do not have k. This value is calculated with the following expression:
k = ln2 / t₁/₂
Replacing the given data we have:
k = ln2 / 12.7
k = 0.0546
Now, let's get the concentration of Cu:
A = 845 e^(-0.0546*4)
A = 845 e^(-0.2183)
A = 845 * 0.8039
A = 679.2955 ppm
This would be the concentration after 4 hours