In nature, boron is monoatomic. Therefore, its formula is B.
On the other hand, fluorine is diatomic. Therefore, its formula is F2
Now, the basic unbalanced equation is:
B + F2 .........> BF3
Now, we need to balance this equation. As you can see, we have two fluorine moles entering the reaction and 3 formed in the products.
Balancing the equation, we will reach the following balanced reaction:
2B + 3F2 .......> 2BF3
Answer:
Explanation:
<u>1) Data:</u>
a) n = 2 moles
b) T = 373 K
c) V = 2.5 liter
d) P = ?
<u>2) Chemical principles and formula</u>
You need to calculate the pressure of the propane gas in the mixture before reacting. So, you can apply the partial pressure principle which states that each gas exerts a pressure as if it occupies the entire volume.
Thus, you just have to use the ideal gas equation: PV = nRT
<u>3) Solution:</u>
P = 2 mol × 0.08206 atm-liter /K-mol × 373K / 2.5 liter = 24.5 atm
Since the number of moles are reported with one significant figure, you must round your answer to one significant figure, and that is 20 atm (20 is closer to 24.5 than to 30).
M=D*V
D=620 g/cm³
V=75 cm³
m= 620 g/cm³ * 75 cm³=46500 g
m=46500g
This method of quantitative determination of percent purity is titrimetric reactions. These reactions most commonly involve neutralization reactions between an acid and a base. Then, we look at the neutralization reaction:
H₂C₂O₄ + 2 NaOH ⇒ Na₂C₂O₄ + 2 H₂O
So, we do the stoichiometric calculations. The important data we should know is the molar mass of oxalic acid which is equal to 90 g/mol.
(0.2283 mol/L NaOH * 0.3798 L * 1 mol H₂C₂O₄/ 2mol NaOH * 90 g/mol H₂C₂O₄) ÷ 0.7984 g *100%
= 488%
This is impossible. The purity can't be more than 100%. Looking at our calculations and the balance reaction, all steps were done correctly. So, I think there is some typographical error in the given. The mass of the sample should be 7.984 g. Then, the answer would be 48.87% purity.
Answer:
Polymerization.
Explanation:
Polymerization can be defined as a type of chemical reaction in which molecules that are relatively small in size chemically combine to form a huge chain of molecules.
Simply stated, polymerization refers to a chemical reaction where two or more smaller molecules react to produce larger molecules of the same network or repetitive structural units.
In polymerization, the relatively small molecules are generally referred to as monomers while the larger molecules they produce are known as polymers.
Polymerization is given by the chemical formula;
nA -----> A(n).
In this scenario, Luis uses a stencil to repeat the same design on each wall to form one long grapevine with a bunch of grapes every foot along its length.
Hence, the type of chemical reaction this best model is polymerization because it involved repeating the same design (monomers) to form a long grapevine with a bunch of grapes (polymers).