Answer:
The answer to your question is 50 moles of O₂
Explanation:
Balanced Chemical reactions
1.- N₂(g) + 3H₂ (g) ⇒ 2NH₃ (g)
2.- 4NH₃ (g) + 5O₂(g) ⇒ 4NO (g) + 6H₂O (l)
moles of N₂(g) = 20 moles
moles of O₂(g) = ?
Process
1.- Calculate the moles of NH₃
1 mol of N₂ ------------- 2 moles of NH₃
20 moles of N₂ --------- x
x = (20 x 2) / 1
x = 40 moles of NH₃
2.- Calculate the moles of O₂
4 moles of NH₃ -------------- 5 O₂
40 moles of NH₃ ------------ x
x = (40 x 5) / 4
x = 200 / 4
x = 50 moles of O₂
I would say that the answer has to be C
Since there is no change in mols on both sides of the equation the mass is constant
Answer:
Explanation:
Density of gold is 19.3 g / cm³
Density of copper is 8.96 g / cm³
Density of bronze is 8.7 g / cm³
Hence when the gold and copper or bronze are mixed , the density of gold will be reduced due to less density of copper and bronze in comparison to that of gold.
Answer:
% = 11.11%
Explanation:
To get the %m/m of any solution we should use the following expression:
%m/m = m solute / m solution * 100
we have the mass of solute, but not the mass of solution, however this can be calculated. solution is made using solute and solvent so:
m solution = 25 + 200 = 225 g
Now that we have the mass of solution, we can calculate the %:
%m/m = 25 / 225 * 100
%m/m = 11.11%
This is the %m/m of this solution
Balance Chemical Equation is as follow,
<span> Cu + 2 AgNO</span>₃ → 2 Ag + Cu(NO₃)₂
According to Balance Equation,
2 Moles of Ag is produced by reacting = 1 Mole of Cu
So,
0.854 Moles of Ag will be produced by reacting = X Moles of Cu
Solving for X,
X = (0.854 mol × 1 mol) ÷ 2 mol
X = 0.427 Moles of Cu
Result:
0.854 Moles of Ag are produced by reacting 0.427 Moles of Cu.