answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anton [14]
2 years ago
6

An air compressor compresses 6 L of air at 120 kPa and 22°C to 1000 kPa and 400°C. Determine the flow work, in kJ/kg, required b

y the compressor. The gas constant of air is R = 0.287 kPa·m3/kg·K. The flow work required by the compressor is
Physics
1 answer:
Mariana [72]2 years ago
6 0

Answer:

The work flow required by the compressor = 100.67Kj/kg

Explanation:

The solution to this question is obtained from the energy balance where the initial and final specific internal energies and enthalpies are taken from A-17 table from the given temperatures using interpolation .

The work flow can be determined using the equation:

M1h1 + W = Mh2

U1 + P1alph1 + ◇U + Workflow = U2 + P2alpha2

Workflow = P2alpha2 - P1alpha1

Workflow = (h2 -U2) - (h1 - U1)

Workflow = ( 684.344 - 491.153) - ( 322.483 - 229.964)

Workflow = ( 193.191 - 92.519)Kj/kg

Workflow = 100.672Kj/kg

You might be interested in
Four friends push on the same block in different directions. Allie pushes on the block to the north with a force of 18 N. Bill p
frozen [14]

Answer:

South and West

Explanation:

Those people are pushing the hardest. It will move south faster than it moves west.

5 0
2 years ago
Learning Goal: To practice Problem-Solving Strategy 19.1 Work in Ideal-gas Processes. A cylinder with initial volume VVV contain
Leokris [45]

Answer:

The work done on the gas is equal to the area under the curve pv diagram w = area of triangle = 1/2 (base)(height) = 1/2 (BC)(Ac) = 1/2 (3v - v)(3p - p) = 1/2 (9 vp - 3 vp - 3vp + vp) = 4 vp/2 W = 2 vp

Check attachment for the diagrammatic representation

5 0
2 years ago
If you peel two strips of transparent tape off the same roll and immediately let them hang near each other, they will repel each
g100num [7]

Answer:

1.

Firstly removing off one strip and it leaves electrons behind, so the strip becomes positively charged.

2. The roll however is not negatively charged because it is "earthed " by the hand holding it, thus excess negatives repel each other away through the hand.

3.Tearing off the next strip and once more it leaves electrons behind, the new strip is also positively charged and will repel the first strip.

4. Then, tear two strips apart and one will leave electrons behind on the other. Meaning that one strip is positive and the other is negative and they will attract each other.

5 0
2 years ago
Two planes leave wichita at noon. one plane flies east 30 mi/h faster than the other plane, which is flying west. at what time w
scoundrel [369]
You have to take note of the individual directions of the plane. Since one is heading east, and the other is heading west, the planes are heading at opposite directions. So, it means that their distance between each other would be equal to 1,200 miles which accounts for the sum of their individual distances. The equation is as follows:

Total Distance = Distance of slower plane + Distance of faster plane
1,200 miles = st + (30+s)(t)
where
s is the speed of the slower plane and t is the time. Since both are not given, the final answer would just be in terms of s.
1,200 = t(s + 30 + s)
t = 1200/(30+2s)
t = 600/(15+s)
4 0
2 years ago
|| Climbing ropes stretch when they catch a falling climber, thus increasing the time it takes the climber to come to rest and r
Otrada [13]

To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.

Newton's second law is defined as

F = ma

Where,

m = mass

a = acceleration

From this equation we can figure the acceleration out, then

a = \frac{F}{m}

a = \frac{11*10^3}{80}

a = 137.5m/s

From the cinematic equations of motion we know that

v_f^2-v_i^2 = 2ax

Where,

v_f =Final velocity

v_i =Initial velocity

a = acceleration

x = displacement

There is not Final velocity and the acceleration is equal to the gravity, then

v_f^2-v_i^2 = 2ax

0-v_i^2 = 2(-g)x

v_i =\sqrt{2gx}

v_i = \sqrt{2*9.8*4.8}

v_i = 9.69m/s

From the equation of motion where acceleration is equal to the velocity in function of time we have

a = \frac{v_i}{t}

t = \frac{v_i}{a}

t =\frac{9.69}{137.5}

t = 0.0705s

Therefore the time required is 0.0705s

4 0
2 years ago
Read 2 more answers
Other questions:
  • Assuming the same current is running through two separate coils, why is it easier to thrust a magnet into a wire coil with one l
    6·2 answers
  • Why does a clear stream always appear to be shallower than it actually is?
    14·2 answers
  • Two identical carts travel at the same speed toward each other, and then a collision occurs. The graphs show the momentum of eac
    14·1 answer
  • Imagine a small child whose legs are half as long as her parent’s legs. If her parent can walk at maximum speed V, at what maxim
    15·1 answer
  • The downsprue leading into the runner of a certain mold has a length of 175 mm. The cross-sectional area at the base of the spru
    14·1 answer
  • How can promoting total person development can benefit an organization.
    15·2 answers
  • If I0 is the intensity of the unpolarized light incident on the first polarizer, and I1 and I2 denote the intensity of the light
    14·1 answer
  • The Type K thermocouple has a sensitivity of about 41 micro-Volts/℃, i.e. for each degree difference in the junction temperature
    6·1 answer
  • A pendulum makes 50 complete swings in 2 min 40 s.<br> What is the time period for 1 complete swing?
    12·2 answers
  • Which of these is the largest? <br> a. star<br> b. nebula<br> c. galaxy<br> d. sun
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!