answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allisa [31]
2 years ago
4

A medical imaging device shoots 8 million electrons per second through an Ohmic gas. The electrons are motivated by a 3000 V pot

ential difference. What is the effective resistance of the gas?
Physics
1 answer:
Deffense [45]2 years ago
8 0

Answer:

Resistance of the gas is given as

R = 2.34 \times 10^{15} Ohm

Explanation:

As we know that number of electrons per second is

\frac{N}{t} = 8 \times 10^6

now we have

i = \frac{N}{t} e

i = 8 \times 10^6 (1.6 \times 10^{-19})

i = 1.28 \times 10^{-12}

now we have

R = \frac{V}{i}

R = \frac{3000}{1.28 \times 10^{-12}}

R = 2.34 \times 10^{15} Ohm

You might be interested in
23. While sliding a couch across a floor, Andrea and Jennifer exert forces F → A and F → J on the couch. Andrea’s force is due n
PSYCHO15rus [73]

Answer:

a)  (95.4 i^ + 282.6 j^) N , b) 298.27 N  71.3º and c)   F' = 298.27 N   θ = 251.4º

Explanation:

a) Let's use trigonometry to break down Jennifer's strength

      sin θ = Fjy / Fj

      cos θ = Fjx / Fj

Analyze the angle is 32º east of the north measuring from the positive side of the x-axis would be

          T = 90 -32 = 58º

         Fjy = Fj sin 58

         Fjx = FJ cos 58

         Fjx = 180 cos 58 = 95.4 N

         Fjy = 180 sin 58 = 152.6 N

Andrea's force is

         Fa = 130.0 j ^

We perform the summary of force on each axis

X axis

       Fx = Fjx

       Fx = 95.4 N

Axis y

       Fy = Fjy + Fa

       Fy = 152.6 + 130

       Fy = 282.6 N

       F = (95.4 i ^ + 282.6 j ^) N

b) Let's use the Pythagorean theorem and trigonometry

       F² = Fx² + Fy²

       F = √ (95.4² + 282.6²)

       F = √ (88963)

       F = 298.27 N

       tan θ = Fy / Fx

       θ = tan-1 (282.6 / 95.4)

       θ = tan-1 (2,962)

       θ = 71.3º

c) To avoid the movement they must apply a force of equal magnitude, but opposite direction

       F' = 298.27 N

       θ' = 180 + 71.3

       θ = 251.4º

4 0
2 years ago
A truck with a heavy load has a total mass of 7100 kg. It is climbing a 15∘ incline at a steady 15 m/s when, unfortunately, the
Andrej [43]

Answer:

The load has a mass of 2636.8 kg

Explanation:

Step 1 : Data given

Mass of the truck = 7100 kg

Angle = 15°

velocity = 15m/s

Acceleration = 1.5 m/s²

Mass of truck = m1 kg

Mass of load = m2 kg

Thrust from engine = T

Step 2:

⇒ Before the load falls off, thrust (T) balances the component of total weight downhill:

T = (m1+m2)*g*sinθ

⇒ After the load falls off, thrust (T) remains the same but downhill component of weight becomes  m1*gsinθ .

Resultant force on truck is F = T – m1*gsinθ  

F causes the acceleration of the truck: F= m*a

This gives the equation:

T – m1*gsinθ = m1*a  

T = m1(a + gsinθ)

Combining both equations gives:

(m1+m2)*g*sinθ = m1*(a + gsinθ)

m1*g*sinθ + m2*g*sinθ =m1*a + m1*g*sinθ

m2*g*sinθ = m1*a

Since m1+m2 = 7100kg, m1= 7100 – m2. This we can plug into the previous equation:

m2*g*sinθ = (7100 – m2)*a

m2*g*sinθ = 7100a – m2a

m2*gsinθ + m2*a = 7100a

m2* (gsinθ + a) = 7100a

m2 = 7100a/(gsinθ  + a)

m2 = (7100 * 1.5) / (9.8sin(15°) + 1.5)

m2 = 2636.8 kg

The load has a mass of 2636.8 kg

6 0
2 years ago
When a mass of 25 g is attached to a certain spring, it makes 20 complete vibrations in 4.0 s. what is the spring constant of th
earnstyle [38]

Answer: The spring  of the spring is 25 N/m.

Explanation:

Mass of the body = 25 g= 0.025 kg (1 kg = 1000 g)

Oscillation is 4 sec = 20

Oscillation in 1 sec =\frac{20}{4}=5

Frequency of the vibration of the spring = 5 s^{-1}=5 Hz

Force constant can be calculated bu using the relation between the frequency and, mass and spring constant 'k'

Frequency=\frac{1}{2\pi}\times \sqrt{\frac{k}{m}}

5 s^{-1}=\frac{1}{2\times 3.14}\times \sqrt{\frac{k}{0.025 kg}}

k=24.649 N/m\approx 25 N/m

The spring  of the spring is 25 N/m.

3 0
2 years ago
Read 2 more answers
A container, partially filled with water, is resting on a scale that measures its weight. Suppose you place a 200 g piece of woo
nikdorinn [45]

The scale reading increases by the weight of 200 g of mass. (If you're on Earth, that's about 2 Newtons.)

8 0
2 years ago
A 5.00μF parallel-plate capacitor is connected to a 12.0 V battery. After the capacitor is fully charged, the battery is disconn
EastWind [94]

(a) 12.0 V

In this problem, the capacitor is connected to the 12.0 V, until it is fully charged. Considering the capacity of the capacitor, C=5.00 \mu F, the charged stored on the capacitor at the end of the process is

Q=CV=(5.00 \mu F)(12.0 V)=60 \mu C

When the battery is disconnected, the charge on the capacitor remains unchanged. But the capacitance, C, also remains unchanged, since it only depends on the properties of the capacitor (area and distance between the plates), which do not change. Therefore, given the relationship

V=\frac{Q}{C}

and since neither Q nor C change, the voltage V remains the same, 12.0 V.

(b) (i) 24.0 V

In this case, the plate separation is doubled. Let's remind the formula for the capacitance of a parallel-plate capacitor:

C=\frac{\epsilon_0 \epsilon_r A}{d}

where:

\epsilon_0 is the permittivity of free space

\epsilon_r is the relative permittivity of the material inside the capacitor

A is the area of the plates

d is the separation between the plates

As we said, in this case the plate separation is doubled: d'=2d. This means that the capacitance is halved: C'=\frac{C}{2}. The new voltage across the plate is given by

V'=\frac{Q}{C'}

and since Q (the charge) does not change (the capacitor is now isolated, so the charge cannot flow anywhere), the new voltage is

V'=\frac{Q}{C'}=\frac{Q}{C/2}=2 \frac{Q}{C}=2V

So, the new voltage is

V'=2 (12.0 V)=24.0 V

(c) (ii) 3.0 V

The area of each plate of the capacitor is given by:

A=\pi r^2

where r is the radius of the plate. In this case, the radius is doubled: r'=2r. Therefore, the new area will be

A'=\pi (2r)^2 = 4 \pi r^2 = 4A

While the separation between the plate was unchanged (d); so, the new capacitance will be

C'=\frac{\epsilon_0 \epsilon_r A'}{d}=4\frac{\epsilon_0 \epsilon_r A}{d}=4C

So, the capacitance has increased by a factor 4; therefore, the new voltage is

V'=\frac{Q}{C'}=\frac{Q}{4C}=\frac{1}{4} \frac{Q}{C}=\frac{V}{4}

which means

V'=\frac{12.0 V}{4}=3.0 V

3 0
2 years ago
Other questions:
  • Complete the passage to identify potential and kinetic energy. A rock resting on the top of a hill has energy, while a rock roll
    10·2 answers
  • A car travels three-quarters of the way around a circle of radius 20.0 m in a time of 3.0 s at a constant speed. the initial vel
    6·1 answer
  • Four electrons are located at the corners of a square 10.0 nm on a side, with an alpha particle at its midpoint. How much work i
    12·1 answer
  • Titanium metal requires a photon with a minimum energy of 6.94×10−19J to emit electrons. If titanium is irradiated with light of
    10·1 answer
  • What mass needs to be attached to a spring with a force constant of 7N/m in order to make a simple harmonic oscillator oscillate
    9·1 answer
  • A single slit, which is 0.050 mm wide, is illuminated by light of 550 nm wavelength. What is the angular separation between the
    15·1 answer
  • Physics professor Antonia Moreno is pushed up a ramp inclined upward at an angle 31.0 ∘ above the horizontal as she sits in her
    13·1 answer
  • 4. Dr. Copus is in charge of the cognition department at the University of Wisconsin-Madison. A new drug named Mem-Reen has beco
    15·1 answer
  • 4. A cylindrical tube has a length of 14.4cm and a radius of 1.5cm and is filled with a colorless gas. If the density of the gas
    12·1 answer
  • The different in size of each of the rope's pullers, correspond to a difference in the magnitude of the applied force, such that
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!