The normal vectors to the two planes are (3, 3, 2) and (2, -3, 2). The cross product of these will be the direction vector of the line of intersection, (12, -2, -15).
Using x=0, we can find a point on this line by solving the simultaneous equations that remain:
... 3y +2z = -2
... -3y +2z = 2
Adding these, we get
... 4z = 0
... z = 0
so the point we're looking for is (x, y, z) = (0, -2/3, 0). This gives rise to the parametric equations ...
- x = 12t
- y = -2/3 -2t
- z = -15t
By letting t=2/3, we can find a point on the line that has integer coefficients. That will be (x, y, z) = (8, -2, -10).
Then our parametric equations can be written as
- x = 8 +12t
- y = -2 -2t
- z = -10 -15t
The most reasonable description of the two populations for her conclusion is business and nursing students in the classes that were surveyed at Diablo Valley College (DVC).
Step-by-step explanation:
The question itself indicates that., For a statistics project, a community college student at Diablo Valley College (DVC) decides to investigate cheating in two popular majors at DVC in order to find out the most academic cheaters.,
also the researcher( student) convinces the professors who teach business and nursing courses at DVC to distribute a short anonymous survey in their classes. So., The most reasonable description of the two populations for her conclusion is business and nursing students in the classes that were surveyed at Diablo Valley College (DVC).
Answer:
the price now is 100-35=65% of the initial price p
65p/100=78
65p=78*100
p=7800/65
p=120 ( the phone before the discounted price )
Step-by-step explanation:
I'll just factor the above equation.
x² + 18x + 80
x² ⇒ x * x
80
can be:
1 x 80
2 x 40
4 x 20
5 x 16
8 x 10 Correct pair
(x+8)(x+10)
x(x+10) +8(x+10) ⇒ x² + 10x + 8x + 80 = x² + 18x + 80
x+8 = 0
x = -8
x+10 = 0
x = -10
x = -8
(-8)² + 18(-8) + 80 = 0
64 - 144 + 80 = 0
144 - 144 = 0
0 = 0
(-10)² + 18(-10) + 80 = 0
100 - 180 + 80 = 0
180 - 180 = 0
0 = 0
I think the algebra tiles will not be a good tool to use to factor the quadratic equation because the equation is not a perfect square quadratic equation.