answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maxonik [38]
2 years ago
5

A carousel - a horizontal rotating platform - of radius r is initially at rest, and then begins to accelerate constantly until i

t has reached angular velocity after 2 complete revolutions. What is the angular acceleration of the carousel during this time
Physics
1 answer:
OLga [1]2 years ago
7 0

Answer:

α = (ω²)/8π

Explanation:

The angular acceleration(α) of the carousel can be determined by using rotational kinematics:

ω² =ωo² + 2αθ

Let's make α the subject of this equation ;

ω² - ωo² = 2αθ

α = (ω² −ωo²)/2θ

Now, from the question, since initially at rest, thus, ωo = 0

Also,since 2 revolutions, thus, θ = 2 x 2π = 4π since one revolution is 2π

Plugging in the relevant values to get ;

α = (ω²)/2(4π)

α = (ω²)/8π

You might be interested in
A 0.305 kg book rests at an angle against one side of a bookshelf. The magnitude and direction of the total force exerted on the
tankabanditka [31]

Answer

given,

F_L= 1.52\ N

\theta_L= 31^0

mass of book = 0.305 Kg

so, from the diagram attached  below

F_L cos {\theta_L} + F_b sin {\theta_b} = m g

1.52 times cos {31^0} + F_b sin {\theta_b} = 0.305 \times 9.8

F_b sin {\theta_b} = 2.989 -1.303

F_b sin {\theta_b} = 1.686

computing horizontal component

F_b cos {\theta_b} = F_L sin {\theta_L}

cos {\theta_b} = \dfrac{F_L sin {\theta_L}}{F_b}

cos {\theta_b} = \dfrac{1.52 \times sin {31^0}}{1.686}

cos {\theta_b} = 0.464

θ = 62.35°

5 0
2 years ago
You travel in a circle, whose circumference is 8 kilometers, at an average speed of 8 kilometers/hour. If you stop at the same p
Schach [20]
Velocity = (displacement) / (time)

Displacement = straight-line distance between start-point and end-point

If you stop at the same point you started from, then
your displacement for the trip is zero, and your average
velocity is also zero.

5 0
2 years ago
Read 2 more answers
Una columna de mármol, cuya área de sección transversal es de 2.0 m2 sostiene una masa de 25.000 kg. Encontrar: (3 pto )a) El es
bazaltina [42]

Responder:

122,500 Pa; 2.45 × 10 ^ -6; 2.94 × 10 ^ -5m

Explicación:

Dado lo siguiente:

Área de sección transversal (A) = 2m ^ 2

Masa (m) = 25000 kg

Módulo de Young = 50 x 10 ^ 9 N / m2

(1) estrés en la columna:

Estrés = Fuerza / Área

F = masa * aceleración debido a la gravedad

F = 25000kg * 9.8m / s ^ 2 = 245,000J

Estrés = 245,000J / 2m ^ 2

Estrés = 122,500 Pa

2) Deformación de la unidad (deformación):

Usando la relación:

Módulo de Young = Estrés / tensión

50 × 10 ^ 9 = 122,500 / CEPA

Cepa = 122500 / (50 × 10^9)

Cepa = 0.00000245

C) Si la altura es de 12 m, ¿cuánto se acorta la columna?

Cepa = extensión / longitud

0.00000245 = extensión / 12

0,00000245 * 12

0,0000294 m

7 0
2 years ago
A child’s toy rake is held so that its resistance length is 0.85 meters. If the mechanical advantage is 0.43, what is the effort
mart [117]

Answer:

1.28

Explanation:

7 0
1 year ago
The magnetic field around a current-carrying wire is ________proportional to the current and _________proportional to the distan
PSYCHO15rus [73]

Answer:Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u>  proportional to the current and <u><em>inversely</em></u>  proportional to the distance from the wire.  If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.

Explanation:

Magnetic field around a long current carrying wire is given by

B=\frac{\mu _o I}{2\pi r}

where B= magnetic field

           \mu _o= permeability of free space

           I= current in the long wire and

           r= distance from the current carrying wire

Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u>  proportional to the current and <u><em>inversely</em></u>  proportional to the distance from the wire.  

Now if I'=3I and r'=2r then magnetic field B' is given by

B'=\frac{\mu _oI'}{2\pi r'}=\frac{\mu _o3I}{2\pi 2r}=1.5B

Thus If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.

   

7 0
2 years ago
Read 2 more answers
Other questions:
  • According to Newton’s law of universal gravitation, which statements are true?
    10·2 answers
  • The number that is used to show the value of one currency compared to another is called the __________. A. trade rate B. currenc
    6·1 answer
  • Determine which type of property each statement describes by typing “physical” or “chemical” in the blank. Hydrogen is a colorle
    7·2 answers
  • A helicopter is traveling at 86.0 km/h at an angle of 35° to the ground. What is the value of Ax? Round your answer to the neare
    9·2 answers
  • A skater starts skating from rest and speeds up to 6m/s^2 in 12 seconds. What is the acceleration of the skater?
    12·2 answers
  • A vertical wire carries a current straight up in a region where the magnetic field vector points due north. What is the directio
    13·1 answer
  • A uniform Rectangular Parallelepiped of mass m and edges a, b, and c is rotating with the constant angular velocity ω around an
    6·1 answer
  • In an experiment, a torque of a known magnitude is exerted along the edge of a rotating disk. The disk rotates about its center.
    6·1 answer
  • If F1 is the force on q due to Q1 and F2 is the force on q due to Q2, how do F1 and F2 compare? Assume that n=2.
    12·1 answer
  • Find the magnitude of the magnetic field ∣∣B⃗ (r)∣∣ inside the cylindrical resistor, where r is the distance from the axis of th
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!