answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Degger [83]
2 years ago
10

Calculate the gravitational potential energy of the interacting pair of the Earth and a 11 kg block sitting on the surface of th

e Earth. You would need to supply the absolute value of this result to move the block to a location very far from the Earth (actually, you would need to use even more energy than this due to the gravitational potential energy associated with the Sun-block interacting pair).
Physics
1 answer:
trasher [3.6K]2 years ago
5 0

Answer:

Gravitational potential energy (GPE) = 107.8J

Explanation:

Gravitational potential energy (GPE) = mgh

Where mass(m) = 11kg

Acceleration due to gravity(g) = 9.8m²/s

height = assumed to be 1m

Force(F) = mg

Force(F) = 11×9.8 = 107.8N

Gravitational potential energy (GPE) = 107.8×1

= 107.8J

You might be interested in
According to Newton’s law of universal gravitation, which statements are true?
Arte-miy333 [17]

Answer: The statement first and the fourth statement are true.

Explanation:

According to Newton's gravitational law, every particle in the universe attracts every other particle with the force of attraction between the masses is directly proportional to the product of the masses and inversely proportional to the square of the distance between them.

As we move to higher altitude, the force of gravity on use decreases because the force of gravity is inversely proportional to the distance.

If the masses of the two objects are more then there will be greater force of gravity between them.

Therefore, the statement first and the fourth statement are true.

7 0
2 years ago
Read 2 more answers
An ideal spring is mounted horizontally, with its left end fixed. The force constant of the spring is 170 N/m. A glider of mass
solniwko [45]

Answer:

A) The new amplitude = 0.048 m

B) Period T = 0.6 seconds

Explanation: Please find the attached files for the solution

4 0
2 years ago
A worker wants to turn over a uniform 1110-N rectangular crate by pulling at 53.0 ∘ on one of its vertical sides (the figure (Fi
tekilochka [14]
This problem has three questions I believe:

> How hard does the floor push on the crate?

<span>We have to find the net vertical (normal) Fn force which results from Fp and Fg. 
We know that the normal component of Fg is just Fg, which is equal to as 1110N. 
From the geometry, the normal component of Fp can be calculated: 
Fpn = Fp * cos(θp) 
= 1016.31 N * cos(53) 
= 611.63 N 

The total normal force Fn then is: 
Fn = Fg + Fpn 
= 1110 + 611.63
= 1721.63 N</span>

 

> Find the friction force on the crate

<span>We have to look for the net horizontal force Fh which results from Fp and Fg. Since Fg is a normal force entirely,  so we can say that the horizontal component is zero: 

Fh = Fph + Fgh 
= (Fp * sin(θp)) + 0 
= 1016.31 N * sin(53) 
= 811.66 N</span>

 

> What is the minimum coefficient of static friction needed to prevent the crate from slipping on the floor?

We just need to compute the ratio Fh to Fn to get the minimum μs.

 

μs = Fh / Fn

= 811.66 N / 1721.63 N

<span>= 0.47</span>

8 0
2 years ago
A rabbit is trying to cross the street. Its velocity v as a function of time t is given in the graph below where
Amiraneli [1.4K]

Answer:

2.5

Explanation:

8 0
2 years ago
The angle θ is slowly increased. Write an expression for the angle at which the block begins to move in terms of μs.
Reika [66]

Answer:

tan \theta = \mu_s

Explanation:

An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:

mg sin \theta - \mu_s R =0 (1)

where

mg sin \theta is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity, \theta the angle of the slope

\mu_s R is the frictional force, with \mu_s being the coefficient of friction and R the normal reaction of the incline

The equation of the forces along the direction perpendicular to the slope is

R-mg cos \theta = 0

where

R is the normal reaction

mg cos \theta is the component of the weight perpendicular to the slope

Solving for R,

R=mg cos \theta

And substituting into (1)

mg sin \theta - \mu_s mg cos \theta = 0

Re-arranging the equation,

sin \theta = \mu_s cos \theta\\\rightarrow tan \theta = \mu_s

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of \mu_s, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.

4 0
2 years ago
Other questions:
  • Suppose we replace both hover pucks with pucks that are the same size as the originals but twice as massive. otherwise, we keep
    11·2 answers
  • A plane traveled west for 4.0 hours and covered a distance of 4,400 kilometers. What was its velocity? 18,000 km/hr 1,800 km/hr,
    12·2 answers
  • If 10.0 liters of oxygen at stp are heated to 512 °c, what will be the new volume of gas if the pressure is also increased to 15
    15·1 answer
  • Imagine that you are sitting in a closed room (no windows, no doors) when, magically, it is lifted from Earth and sent accelerat
    14·1 answer
  • An archer fires an arrow, which produces a muffled "thwok" as it hits a target. If the archer hears the "thwok" exactly 1 s afte
    10·1 answer
  • A 2-kg wood block is pulled by a string across a rough horizontal floor. The string exerts a tension force of 30 N on the block
    13·1 answer
  • A simple harmonic wave of wavelength 18.7 cm and amplitude 2.34 cm is propagating along a string in the negative x-direction at
    7·1 answer
  • A beam of electrons is accelerated from rest through a potential difference of 0.200 kV and then passes through a thin slit. Whe
    13·1 answer
  • If the temperature of an ideal gas is increased from 200 K to 600 K, what happens to the rms speed of the molecules? (a) It incr
    11·2 answers
  • Two long, parallel, current-carrying wires lie in an xy-plane. The first wire lies on the line y = 0.340 m and carries a current
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!