answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Degger [83]
1 year ago
10

Calculate the gravitational potential energy of the interacting pair of the Earth and a 11 kg block sitting on the surface of th

e Earth. You would need to supply the absolute value of this result to move the block to a location very far from the Earth (actually, you would need to use even more energy than this due to the gravitational potential energy associated with the Sun-block interacting pair).
Physics
1 answer:
trasher [3.6K]1 year ago
5 0

Answer:

Gravitational potential energy (GPE) = 107.8J

Explanation:

Gravitational potential energy (GPE) = mgh

Where mass(m) = 11kg

Acceleration due to gravity(g) = 9.8m²/s

height = assumed to be 1m

Force(F) = mg

Force(F) = 11×9.8 = 107.8N

Gravitational potential energy (GPE) = 107.8×1

= 107.8J

You might be interested in
Table 2.4 shows how the dispacement of a runner changed during a sprint race. Draw a dispacement-time graph to show this data, a
GalinKa [24]
4. Table 2.4 shows how the displacement of a runner changed
during a sprint race. Draw a displacement–time graph to show
this data, and use it to deduce the runner’s speed in the middle
of the race.
Table 2.4 Data for a sprinter during a race
Displacement
(m)
0 4 10 20 50 80 105
Time (s) 1 2 3 6 9 12
8 0
1 year ago
charge, q1 =5.00μC, is at the origin, a second charge, q2= -3μC, is on the x-axis 0.800m from the origin. find the electric fiel
IRISSAK [1]

Answer:

Explanation:

Electric field due to charge at origin

= k Q / r²

k is a constant , Q is charge and r is distance

= 9 x 10⁹ x 5 x 10⁻⁶ / .5²

= 180 x 10³ N /C

In vector form

E₁ = 180 x 10³ j

Electric field due to q₂ charge

= 9 x 10⁹ x 3 x 10⁻⁶ /.5² + .8²

= 30.33 x 10³ N / C

It will have negative slope θ with x axis

Tan θ = .5 / √.5² + .8²

= .5 / .94

θ = 28°

E₂ = 30.33 x 10³ cos 28 i - 30.33 x 10³ sin28j

= 26.78 x 10³ i - 14.24 x 10³ j

Total electric field

E = E₁  + E₂

= 180 x 10³ j +26.78 x 10³ i - 14.24 x 10³ j

= 26.78 x 10³ i + 165.76 X 10³ j

magnitude

= √(26.78² + 165.76² ) x 10³ N /C

= 167.8 x 10³  N / C .

3 0
2 years ago
>En cual de las siguientes situaciones la fuerza neta sobre el cuerpo es cero?
ExtremeBDS [4]
La respuesta es "Un avion que vuela al norte con rapidez constante y altitud constante".

Para que la fuerza neta sea 0, la aceleracion debe ser 0, para esto la velocidad debe ser constante.  

Para que la velocidad sea constante el objecto debe estar moviendo con rapidez (magnitud de la velocidad) constante y sin cambiar direccion; ya que la velocidad es un vector asi es que depende en magnitud y direccion.

En las demas opciones la magnitud de la velocidad (rapidez) cambia y/o la direccion.
3 0
2 years ago
A large solar panel on a spacecraft in Earth orbit produces 1.0 kW of power when the panel is turned toward the sun. What power
Mandarinka [93]

Answer:

e*P_s = 11 W

Explanation:

Given:

- e*P = 1.0 KW

- r_s = 9.5*r_e

- e is the efficiency of the panels

Find:

What power would the solar cell produce if the spacecraft were in orbit around Saturn

Solution:

- We use the relation between the intensity I and distance of light:

                                  I_1 / I_2 = ( r_2 / r_1 ) ^2

- The intensity of sun light at Saturn's orbit can be expressed as:

                                  I_s = I_e * ( r_e / r_s ) ^2

                                  I_s = ( 1.0 KW / e*a) * ( 1 / 9.5 )^2

                                  I_s = 11 W / e*a

- We know that P = I*a, hence we have:

                                  P_s = I_s*a

                                  P_s = 11 W / e

Hence,                       e*P_s = 11 W

3 0
2 years ago
As a runner crosses the finish line of a race, she starts decelerating from a velocity of 9 m/s at a rate of 2 m/s^2. Take the r
Ksivusya [100]

Answer:

- 1 m/s, 20 m

Explanation:

u = 9 m/s, a = - 2 m/s^2, t = 5 sec

Let s be the displacement and v be the velocity after 5 seconds

Use first equation of motion.

v = u + a t

v = 9 - 2 x 5 = 9 - 10 = - 1 m/s

Use second equation of motion

s = u t + 1/2 a t^2

s = 9 x 5 - 1/2 x 2 x 5 x 5

s = 45 - 25 = 20 m

4 0
1 year ago
Other questions:
  • The sun produces 3.826 x 1026 Joules of energy every second as it combines smaller hydrogen atoms into larger helium atoms. What
    7·1 answer
  • A space station consists of two donut-shaped living chambers, A and B, that have the radii shown in the drawing. As the station
    12·1 answer
  • At the instant a ball is thrown horizontally with a large force, an identical ball is dropped from the same height. which ball h
    10·2 answers
  • Bats use a process called echolocation to find their food. This involves giving out sound waves that hit possible prey or food.
    7·2 answers
  • A package is dropped from a helicopter that is descending steadily at a speed v0. After t seconds have elapsed, consider the fol
    13·2 answers
  • A glider of mass 0.240 kg is on a horizontal track, attached to a horizontal spring of force constant 6.00 N/m. There is frictio
    12·1 answer
  • A diver named Jacques observes a bubble of air rising from the bottom of a lake (where the absolute pressure is 3.50 atm) to the
    5·1 answer
  • A 10. g cube of copper at a temperature T1 is placed in an insulated cup containing 10. g of water at a temperature T2. If T1 &g
    12·1 answer
  • Bernice draws an oxygen atom. She draws a small circle for the nucleus. Inside of the circle, she draws plus signs for protons a
    14·1 answer
  • Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!