Answer : Option 3) Wave/Particle duality.
Explanation : The experiment on discovery of photoelectric effect revealed about the photoelectrons of light that can behave as particle or waves.
The photoelectric effect is observed when the emission of electrons or other free carriers occurs on shining a light radiation on a material. The electrons emitted from this can be called photo electrons. These photoelectrons may behave as wave or particle in duality which holds that light and matter exhibit properties of both waves and of particles.
In a chemical reaction,
the limiting reagent is the chemical being used up while the excess reactant is
the chemical left after the reaction process.
Before calculating the limiting
and excess reactant, it is important to balance the equation first by stoichiometry.
C25N3H30Cl + NaOH = C25N3H30OH + NaCl
Since the reaction is already balanced, we can now identify which
is the limiting and excess reagent.
First, we need to determine the number of moles of each chemical
in the equation. This is crucial for determining the limiting and excess reagent.
<span>Assuming that there is the
same amount of solution X for each reactant</span>
1.0 M NaOH ( X ) = 1.0
moles NaOH
1.00 x 10-5 M C25N3H30Cl
( X ) = 1.00 x 10-5 moles C25N3H30Cl
<span>The result showed that the
crystal violet has lesser amount than NaOH. Thus, the limiting reactant in this
chemical reaction is crystal violet and the excess reactant is NaOH.</span>
Answer:
She should not have multiplied the nitrogen atom by subscript 2.
Explanation:
Chemical formula:
3(NH₄)₂SO₄
Elements present in given formula:
Nitrogen
Hydrogen
Sulfur
Oxygen
Total number of atoms of elements:
N = 3×1×2 = 6
H = 4×2×3 = 24
S = 1×3 = 3
O = 3×4 = 12
The number nitrogen atoms are six. Elena did mistake by counting the number of nitrogen. She should didn't multiplied the nitrogen atom by subscript 2.
Answer:
c) 22
Explanation:
Let's consider the following balanced equation.
N₂(g) + 3 H₂(g) ----> 2 NH₃(l)
According to the balanced equation, 34.0 g of NH₃ are produced by 1 mol of N₂. For 170 g of NH₃:

According to the balanced equation, 34.0 g of NH₃ are produced by 3 moles of H₂. For 170 g of NH₃:

The total gaseous moles before the reaction were 5.00 mol + 15.0 mol = 20.0 mol.
We can calculate the pressure (P) using the ideal gas equation.
P.V = n.R.T
where
V is the volume (50.0 L)
n is the number of moles (20.0 mol)
R is the ideal gas constant (0.08206atm.L/mol.K)
T is the absolute temperature (400.0 + 273.15 = 673.2K)
