answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesantik [10]
2 years ago
5

A system of two objects has ΔKtot = 6 J and ΔUint = -5 J. Part A How much work is done by interaction forces? Express your answe

r as an integer. Part B
How much work is done by external forces?
Express your answer as an integer.
Physics
1 answer:
Elina [12.6K]2 years ago
5 0

A) +5 J

B) +1 J

Explanation:

A)

The internal forces (interaction forces) acting on a system do not change the mechanical energy (sum of potential and kinetic energy) of the system.

However, these forces are responsible for converting the energy from one form into another; the work done by these forces is equal to the amount of energy converted from one form into the other.

In this problem, we have:

\Delta U=-5 J is the loss in potential energy of the system

\Delta K=+6 J is the gain in kinetic energy of the system

By looking at these numbers, this means that the internal forces have converted 5 J of energy from potential energy into kinetic energy (while the additional +1 J missing is due to external forces, as explained in part B).

Therefore, the work done by internal forces is

W = +5 J

B)

First of all, we calculate the change in mechanical energy of the system.

The mechanical energy of a system is the sum of its kinetic energy (K) and its potential energy (U):

E=K+U

So, the change in mechanical energy is equal to the sum of the changes of kinetic energy and the changes of potential energy:

\Delta E= \Delta K + \Delta U

In this problem:

\Delta K=+6 J

\Delta U=-5 J

So, the change in mechanical energy is:

\Delta E=+6+(-5)=+1 J

According to the work-energy theorem, the work done by external forces on a system is equal to the change in mechanical energy of the system: therefore in this case, the work done by external forces is

W=\Delta E=+1 J

You might be interested in
9ma electric current is flowing through a conducting wire , then the number of electron passing through it in 3 min is
Leviafan [203]

Answer:

1.0125 x 10^19

Explanation:

current flowing through conductive wire= 9mA = 9 x 10^ -3 A

charge passing per 3 min

Q = It

= 9 x 10^ -3 x (3 x 60)

= 1.620 C

no of electrons in charge

Q = ne

1.620 = n x 1.6 x 10 ^ -19

n. = 1.0125 x 10 ^19

4 0
2 years ago
If a scale on Earth reads 650 N, what is your mass?
OlgaM077 [116]
If the scale reads 650N, then the mass of whoever it is standing on the scale is

         (weight) / (gravity)  =  (650N) / (9.8 m/s²)  =  66.3 kilograms  .

It's not MY mass, even if I'm the one standing on the scale. 
If I stand on a scale and it reads 650 N, the scale is broken.
4 0
2 years ago
A stone is thrown vertically upward with a speed of 15.5 m/s from the edge of a cliff 75.0 m high .
rjkz [21]

a) 2.64 s

We can solve this part of the problem by using the following SUVAT equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the stone

u is the initial velocity

t is the time

a is the acceleration

We must be careful to the signs of s, u and a. Taking upward as positive direction, we have:

- s (displacement) negative, since it is downward: so s = -75.0 m

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a= g = -9.8 m/s^2 (acceleration of gravity)

Substituting into the equation,

-75.0 = 15.5 t -4.9t^2\\4.9t^2-15.5t-75.0 = 0

Solving the equation, we have two solutions: t = -5.80 s and t = 2.84 s. Since the negative solution has no physical meaning, the stone reaches the bottom of the cliff 2.64 s later.

b) 10.4 m/s

The speed of the stone when it reaches the bottom of the cliff can be calculated by using the equation:

v=u+at

where again, we must be careful to the signs of the various quantities:

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a = g = -9.8 m/s^2

Substituting t = 2.64 s, we find the final velocity of the stone:

v = 15.5 +(-9.8)(2.64)=-10.4 m/s

where the negative sign means that the velocity is downward: so the speed is 10.4 m/s.

c) 4.11 s

In this case, we can use again the equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the package

u is the initial velocity

t is the time

a is the acceleration

We have:

s = -105 m (vertical displacement of the package, downward so negative)

u = +5.40 m/s (initial velocity of the package, which is the same as the helicopter, upward so positive)

a = g = -9.8 m/s^2

Substituting into the equation,

-105 = 5.40 t -4.9t^2\\4.9t^2 -5.40 t-105=0

Which gives two solutions: t = -5.21 s and t = 4.11 s. Again, we discard the first solution since it is negative, so the package reaches the ground after

t = 4.11 seconds.

5 0
2 years ago
Read 2 more answers
Assume that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic inte
faltersainse [42]

Answer:

Assuming that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic interaction (i.e., ignore pure Coulomb forces) between the charge and the bar magnet, the magnet will not experience any torque at all - option A

Explanation:

Assuming that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic interaction (i.e., ignore pure Coulomb forces) between the charge and the bar magnet, the magnet will not experience any torque at all; the reason being that: no magnetic field is being produced by a charge that is static. Only a moving charge can produce a magnetic effect. And the magnet can not have any torque due to its own magnetic lines of force.

5 0
2 years ago
A shopper pushes a grocery cart 41.9 m on level ground, against a 44.5 N frictional force. The cart has a mass of 16.3 kg. He pu
Rashid [163]

Answer:

Fp = 26.59[N]

Explanation:

This problem can be solved using the principle of work and energy conservation, i.e. the final kinetic energy of a body will be equal to the sum of the forces that do work on the body plus the initial kinetic energy.

We need to identify the initial data:

d = distance = 41.9[m]

Ff = friction force = 44.5 [N]

m = mass = 16.3 [kg]

v1 = 1.9 [m/s]

v2 = 12.6 [m/s]

The kinetic energy at the beginning can be calculated as follows:

E_{k1}= \frac{1}{2}*m*v_{1}^2 \\E_{k1}= \frac{1}{2}*16.3*(1.9)_{1}^2\\E_{k1}= 29.42[J]

And the final kinetic energy.

E_{k2}= \frac{1}{2}*m*v_{2}^2 \\E_{k2}= \frac{1}{2}*16.3*(12.6)^2\\E_{k2}= 1294[J]

The work is performed by two forces, the friction force and the pushing force, it is important to clarify that these forces are opposite in direction.

The weight of the cart also performs a work in the direction of movement since the plane is tilted down, this component of the weight of the cart must be parallel to the surface of the inclined plane.

W_{1-2}=-(44.5*41.9)+(16.3*9.81*sin(17.5)*41.9)+(F_{p}*41.9) \\therefore:\\E_{k1}+W_{1-2}=E_{k2}\\29.42+150.16+(F_{p}*41.9)=1294\\F_{p}=1114.42/41.9\\F_{p}=26.59[N]

5 0
2 years ago
Other questions:
  • Find your mass if a scale on earth reads 650 N when you stand on it.
    10·1 answer
  • To avoid an accident, a driver steps on the brakes to stop a 1000-kg car traveling at 65km/h. if the braking distance is 35 m, h
    7·1 answer
  • What size force does the femur exerts on the kneecap if the tendons are oriented as in the figure and the tension in each tendon
    15·1 answer
  • Why are satellites placed into orbit at least 150 km above Earth’s surface?
    12·2 answers
  • Keisha finds instructions for a demonstration on gas laws. 1. Place a small marshmallow in a large plastic syringe. 2. Cap the s
    15·2 answers
  • Of the following systems, which contains the most heat?
    10·1 answer
  • As a 15000 kg jet plane lands on an aircraft carrier, its tail hook snags a cable to slow it down. The cable is attached to a sp
    14·1 answer
  • Consider a large tank holding 1000 L of pure water into which a brine solution of salt begins to owat a constant rate of 6L/min.
    13·1 answer
  • The speed of sound in air changes with the temperature. When the temperature T is 32 degrees Fahrenheit, the speed S of sound is
    7·1 answer
  • Which of these has the most kinetic energy
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!