Answer:
37357 sec
or 622 min
or 10.4 hrs
Explanation:
GIVEN DATA:
Lifting weight 80 kg
1 cal = 4184 J
from information given in question we have
one lb fat consist of 3500 calories = 3500 x 4184 J
= 14.644 x 10^6 J
Energy burns in 1 lift = m g h
= 80 x 9.8 x 1 = 784 J
lifts required 
= 18679
from the question,
1 lift in 2 sec.
so, total time = 18679 x 2 = 37357 sec
or 622 min
or 10.4 hrs
Weight = mass*gravity. Hence mass = 980/9.8 = 100kg. Gravity of planet 2 = weight/mass = 3.6 m/s^2
I attached the missing picture.
We can figure this one out using the law of conservation of energy.
At point A the car would have potential energy and kinetic energy.

Then, while the car is traveling down the track it loses some of its initial energy due to friction:

So, we know that the car is approaching the point B with the following amount of energy:

The law of conservation of energy tells us that this energy must the same as the energy at point B.
The energy at point B is the sum of car's kinetic and potential energy:

As said before this energy must be the same as the energy of a car approaching the loop:

Now we solve the equation for

:
Answer:
Explanation:
I dont know if this will help but A two force member is a body that has forces (and only forces, no moments) acting on it in only two locations. In order to have a two force member in static equilibrium, the net force at each location must be equal, opposite, and collinear.
It means you can do 550 Newton Meters of work every second. Power is the rate of doing work, I hope this helps