In geometry, it is always advantageous to draw a diagram from the given information in order to visualize the problem in the context of the given.
A figure has been drawn to define the vertices and intersections.
The given lengths are also noted.
From the properties of a kite, the diagonals intersect at right angles, resulting in four right triangles.
Since we know two of the sides of each of the right triangles, we can calculate their heights which in turn are the segments which make up the other diagonal.
From triangle A F G, we use Pythagoras theorem to find
h1=A F=sqrt(20*20-12*12)=sqrt(256)=16
From triangle DFG, we use Pythagoras theorem to find
h2=DF=sqrt(13*13-12*12)=sqrt(25) = 5
So the length of the other diagonal equals 16+5=21 cm
- The rate of the hose with the large diameter is:
Answer: A). 1/9.
- What is the unknown in the problem?
Answer: C). the time it takes for the hoses working together to fill the pool
-What part of the job does the hose with the large diameter do?
Answer: B). x/9
Answer:
Third option: 
Step-by-step explanation:
<h3>
The correct exercise is attached.</h3>
The equation given is:

The steps to find the value of "x" are shown below:
1. Add 2 to both sides of the equation:

2. Descompose 9 and 27 into their prime factors:

3. Substitute them into the equation:

4. Knowing that If
, then
, we get:

5. Apply Distributive property:

6. Add 2 to both sides:

7. Divide both sides of the equation by 2:

Let Tony's age = x
He is 4 years younger than his brother Josh, so Josh's age would be x + 4
He is 2 years older than his sister, so her age would be x - 2
He has a twin, which would be the same age, so the twins age is also x
They all add together to equal 66, so you get:
x + x + x+4 + x-2 = 66
Simplify:
4x +2 = 66
Subtract 2 from both sides:
4x = 64
Divide both sides by 4:
x = 64/4 = 16
Tony is 16 years old.