Answer:<em><u>
π
. </u></em>
Given:

Using Gauss's Law = ∫∫s E ·dS
= ∫∫∫ div E dV,
⇒ Divergence (Gauss') Theorem
= ∫∫∫ (1+1+6) dV
= 8×(volume of the hemisphere, radius "a")
= 8× (
)(4/3)π
<em><u>=
π
. </u></em>
Answer: A,D
Step-by-step explanation: I think that it is right?
There are 8 Jacks and Queens and 8 King and Aces
3*8+5*8=24+40=64 $
Answer:
168
Step-by-step explanation:
60+16+8 is 84
84 times 2 is 168
Mark me as brainliest if this helps!
First let's write out the inequality before choosing a graph.
x apples each weighing 1/3 of a pound: 1/3x
y pounds of grapes: y
So...
1/3x + y < 5
The maximum weight is 4 pounds since the total weight of both the grapes and apples are less than 5.
In the y-axis, the first, third, and fourth graphs already exceed the capacity of 5 pounds.
So, by process of elimination, the correct graph for this problem is the second one.