You must add 7.5 pt of the 30 % sugar to the 5 % sugar to get a 20 % solution.
You can use a modified dilution formula to calculate the volume of 30 % sugar.
<em>V</em>_1×<em>C</em>_1 + <em>V</em>_2×<em>C</em>_2 = <em>V</em>_3×<em>C</em>_3
Let the volume of 30 % sugar = <em>x</em> pt. Then the volume of the final 20 % sugar = (5 + <em>x</em> ) pt
(<em>x</em> pt×30 % sugar) + (5 pt×5 % sugar) = (<em>x</em> + 5) pt × 20 % sugar
30<em>x</em> + 25 = 20x + 100
10<em>x</em> = 75
<em>x</em> = 75/10 = 7.5
<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>
Answer:
Ka = [H₃O⁺] [SO₃²⁻] / [HSO₃⁻]
Kb = [OH⁻] [H₂SO₃] / [HSO₃⁻]
Explanation:
An amphoteric substance as HSO₃⁻ is a substance that act as either an acid or a base. When acid:
HSO₃⁻(aq) + H₂O(l) ⇄ H₃O⁺(aq) + SO₃²⁻(aq)
And Ka, the acid dissociation constant is:
<h3>Ka = [H₃O⁺] [SO₃²⁻] / [HSO₃⁻]</h3><h3 />
When base:
HSO₃⁻(aq) + H₂O(l) ⇄ OH⁻(aq) + H₂SO₃(aq)
And kb, base dissociation constant is:
<h3>Kb = [OH⁻] [H₂SO₃] / [HSO₃⁻]</h3>
Answer:
B.
Solar energy is converted into chemical potential energy, which is found in the products like glucose.
Explanation:
Answer:
See explanation
Explanation:
Now , we have the equation of the reaction as;
2H2S(g) + 302(g)------->2SO2(g) + 2H2O(g)
This equation shows that SO2 gas is produced in the process. Let us recall that this same SO2 gas is the anhydride of H2SO4. This means that it can dissolve in water to form H2SO4
So, when SO2 dissolve in rain droplets, then H2SO4 is formed thereby lowering the pH of rain water. This is acid rain.