0.4649331785818406 is what 27.4 grams is converted to! You're welcome!! :)
The solution for this problem would be:
We are looking for the grams of magnesium that would have
been used in the reaction if one gram of silver were created. The computation
would be:
1 g Ag (1 mol Mg) (24.31 g/mol) / (2mol Ag)(107.87g/mol) =
0.1127 grams of Magnesium
Answer:
feed = 220.77 kg/s; maximum production rate of solid crystal = 416 kg/s; the rate of supplying fresh feed to obtain the production rate = 1.6
Explanation:
Material or mass balance can be used to estimate the mass flow rates of all the streams in the diagram shown in the attached file.
Overall balance: 
Water: 
Using substitution method, we have:
= 220.77 kg/s
= 4.16 kg/s
The maximum production rate of solid crystal is
= 10*4.16 = 416 kg/s
Around evaporator:

kg/s
Around the mixing point:

Solid crystal: 
Using the last two equations, we can obtain:


kg/s
The rate of supplying fresh feed to obtain the production rate is:
= 352.5/220.77 = 1.6
Hey there:
1 cm³ = 1 mL
D = m / V
7.25 = 12.9 / V
V = 12.9 / 7.25
V = 1.779 cm³
<u>Answer:</u> The correct answer is 
<u>Explanation:</u>
We are given:

The substance having highest positive
potential will always get reduced and will undergo reduction reaction. Here, silver will always undergo reduction reaction will get reduced.
Chromium will undergo oxidation reaction and will get oxidized.
The half reactions for the above cell is:
Oxidation half reaction: 
Reduction half reaction:
( × 3)
Net equation: 
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
To calculate the
of the reaction, we use the equation:

Putting values in above equation, we get:

Hence, the correct answer is 