To add these amounts together, we must first find their least common multiple in order to get common denominators (b/c when you add fractions, the denominators must be the same).
We'll start by listing some of their multiples.
To do this, count by whatever the denominator is:
4 1/2 (denominator is 2): 2 4 6 8 10 12 14
2 1/4 (denominator is 4): 4 8 12 16
6 1/3 (denominator is 3): 3 6 9 12 15
Look and see which is the first multiple that all three denominators have. Circle them if it helps you. In this case, it's 12.
So now we have to multiply the denominators by whatever number it takes to reach 12, and multiply by the same number to the numerator:
4 1/2 (times 6 to both top and bottom) =
4 6/12
2 1/4 (times 3) = 2 3/12
6 1/3 (times 4) = 6 4/12
Add all these fractions together, and you get 12 13/12, which is equal to 13 1/12.
Thus, Peter makes a total of 13 1/2 cups.
Hope this made sense! tell me if anything is confusing/incorrect :))
To find 20% of 950 you would set it up as a proportion. When doing percentages the prevent is always out of 100 so the first step would be 20/100. You are trying to find a number out of 950 so the second part would be ?/950. Now you want to cross multiply and divide. 20*950=19,000 then you divide it by 100 (your other number) 19,000/100=190. So 20% of 950 is 190.
Answer:
Number of Cucumbers = 12
Number of Tomatoes = 4
Step-by-step explanation:
Let number of cucumber be c and number of tomatoes be t
Since he has room for 16 plants, we can write:
c + t = 16
He wants to plant 3 times as many cucumbers as tomatoes. We can write:
c = 3t
We can substitute this in 1st equation and solve for t:
c + t = 16
3t + t = 16
4t = 16
t = 16/4 = 4
And c = 3t
c = 3(4) = 12
Number of Cucumbers = 12
Number of Tomatoes = 4
Answer:
The graph is possible for 
Step-by-step explanation:
we know that
The discriminant of a quadratic equation of the form
is equal to

If D=0 the quadratic equation has only one real solution
If D>0 the quadratic equation has two real solutions
If D<0 the quadratic equation has no real solution (complex solutions)
In this problem , looking at the graph, the quadratic equation has two real solutions (the solutions are the x-intercepts)
so

therefore
The graph is possible for 