answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
2 years ago
8

3/20 The winch takes in cable at the rate of 200 mm/s, and this rate is momentarily increasing at 500 mm/s each second. Determin

e the tensions in the three cables. Neglect the weights of the pulleys.

Physics
1 answer:
Musya8 [376]2 years ago
7 0

Answer:

The tension in the cable T_3 = 993.5 N

The tension in the cable T_2 =  496.75  N

The tension in the cable T_1 = 248.375 N

Explanation:

The diagram attached below depicts the full understanding of what the question is all about.

Now, obtaining the length of cable 1 from the diagram; we have:

L_1 = s_B + 2 s_A        ---------- equation \ (1)

where;

s_B = distance from the fixed point to point B

s_A = distance from the fixed point to pulley A

From the cable 2 as well.we obtain its length

L_2 = ( s_W - s_A) + s_W ------- equation \  (2)

where :

s_W = distance from the fixed point to the weight attached to the pulley

Let differentiate equation (1) in order to deduce a relation between the velocities of A and B with respect to time ;

Since L_1 is constant ; Then:

\frac{dL_1}{dt} = \frac{ds}{dt}+ 2\frac{ds_A}{dt}   ---------- euqation \ (3)

0 = v_B +2 v_A

where;

v_B = velocity at point B

v_A = velocity at pulley A

Let differentiate equation (2) as well in order to deduce a relation between the velocities of W and A with respect to time :

Since L_2 is constant ; Then:

L_2 = (s_W - s_A) +s_W

\frac{dL_2}{dt}=2\frac{ds_W}{dt}-\frac{ds_A}{dt}    ----------- equation \ (4)

0 = 2v_W -v_A

where;

v_W = the velocity of the weight

Let differentiate equation (3) in order to deduce a relation between accelerations A and B with respect to time  

\frac{dv_A}{dt} + 2 \frac{dv_A}{dt } = 0

a_B +2a_A = 0  --------- equation \ (5)

a_A = - \frac{1}{2}a_B

where;

a_A = acceleration at A

a_B= acceleration at B

Replacing 0.5 m/s ² for a_B in equation (5); then

a_A = - \frac{1}{2}*0.5

a_A = - 0.25 \ m/s^2

Let differentiate equation (4) in order to deduce a relation between W and A with respect to time

2\frac{dv__W}{dt}- \frac{dv_A}{dt} = 0

2a__W} -a_A = 0  ----------- equation \ (6)

a__W }=  \frac{1}{2}a_A

where;

a_W = acceleration of weight W

Replacing - 0.25 m/s² for a_A

a__W }=  \frac{1}{2}*(-0.25)

a__W }= -0.125 \ m/s^2

From the second diagram, if we consider the equilibrium of forces acting on the cylinder in y-direction; we have:

\sum F_y = ma_y

mg - T_3 = ma_w

where;

m= mass of the cylinder = 100 kg

T_3 = tension in the string = ???

g = acceleration due to gravity = 9.81 m/s²

a_w = acceleration of the cylinder = - 0.125 \ m/s^2

Plugging all values into above equation; we have

(100 × 9.81) - T_3 = 100(-0.125)

T_3 = 993.5 N

∴ The tension in the cable T_3 = 993.5 N

From the third diagram, if we consider the equilibrium of forces acting on the cylinder in y-direction on the pulley ; we have:

\sum F _y = 0  \\ \\2T_2 -T_3 = 0 \\ \\ T_2 = \frac{T_3}{2}

where ;

T_2 = tension in cable 2

Replacing 993.5 N for T_3 ; we have

T_2 = \frac{993.5 \ N}{2}

T_2 = 496.75 \ N

∴ The tension in the cable T_2 = 496.75 \ N

From the fourth  diagram, if we consider the equilibrium of forces acting on the cylinder in y-direction on the pulley A ; we have

\sum F _y = 0  \\ \\2T_1 -T_2 = 0 \\ \\ T_1 = \frac{T_2}{2}

where;

T_1 = tension in  cable 1

Replacing 496.75 N for T_2 in the above equation; we have:

T_1 = \frac{496.75}{2}

T_1 = 248.375 N

∴ The tension in the cable T_1 = 248.375 N

You might be interested in
The inclined plane in the figure above has two sections of equal length and different roughness. The dashed line shows where sec
saveliy_v [14]

The static friction exerted on the block by the incline is \mu _ s _1 Mgcos \ \theta.

The given parameters;

  • <em>mass of the block, = M</em>
  • <em>coefficient of static friction in section 1, = </em>\mu_s_1<em />
  • <em>angle of inclination of the plane, = θ</em>

<em />

The normal force on the block is calculated as follows;

Fₙ = Mgcosθ

The static friction exerted on the block by the incline is calculated as follows;

F_s = \mu_s F_n\\\\F_s = \mu _s_1(Mg cos\ \theta)\\\\F_s = \mu _s_1 Mgcos\ \theta

Thus, the static friction exerted on the block by the incline is \mu _ s _1 Mgcos \ \theta

Learn more here:brainly.com/question/17237604

3 0
2 years ago
Recall the previous question and the scenario with Zamir and Talia finding their way through a maze. Why is their displacement t
Ad libitum [116K]

Sample Response: Zamir and Talia’s total distances are different because they walked different paths in the maze. Zamir took a longer path. However, they had the same displacement because they both ended at the same position.

4 0
2 years ago
Read 2 more answers
Two 8.0 Ω lightbulbs are connected in a 12 V series circuit. What is the power of both glowing bulbs?
V125BC [204]

Answer:

18 W

Explanation:

Applying,

P = V²/R.................. Equation 1

Where P = Power of both glowing bulbs, V = Voltage, R = Combined Resistance of both bulbs

Since: It is a series circuit,

Then,

R = R1+R2............. Equation 2

Where R1= Resistance of the first bulb, R2 = Resistance of the second bulb

Given: R1 = R2 = 8 Ω

Substitute into equation 1

R = 8+8

R = 16 Ω

Also Given: V = 12 V

Substitute into equation 1

P = 12²/8

P = 144/8

P = 18 W

7 0
2 years ago
When light hits the boundary between two different materials, it can undergo when light hits the boundary between two different
Rashid [163]
When light hits the boundary between two different materials, it can undergo both reflection and refraction.

Reflection is the change in the direction of the wave that strikes the boundary between two materials.<span> It involves a change in the direction of waves when they clash with an obstacle.


Refraction  involves the change in the direction of waves as they move from one medium to  </span><span><span>another followed</span></span><span> by a change in speed and wavelength (this second medium should have different permitivity for the light to change its initial properties.)</span>




3 0
2 years ago
Read 2 more answers
if you apply a Force of F1 to area A1 on one side of a hydraulic jack, and the second side of the jack has an area that is twice
Firlakuza [10]

Answer:

2F_{1}

Explanation:

F₁ = Force on one side of the jack

A₁ = Area of cross-section of one side of the jack

F₂ = Force on second side of the jack

A₂ = Area of cross-section of second side of the jack = 2 A₁

Using pascal's law

\frac{F_{1}}{A_{1}}= \frac{F_{_{2}}}{A_{_{2}}}

\frac{F_{1}}{A_{1}}= \frac{F_{_{2}}}{2A_{_{1}}}

F_{1}= \frac{F_{2}}{2}\\

F_{2}= 2F_{1}

7 0
2 years ago
Other questions:
  • In the lab activity, you will examine sound waves as they are emitted from a moving source. Predict what will happen to the soun
    10·2 answers
  • In an experiment the chemical reaction between a piece of aluminum foil and Copper(II)Chloride solution in a beaker is observed.
    12·2 answers
  • Mark has diabetes and needs to undergo dialysis twice a week. Dialysis purifies the body by removing waste and excess water from
    12·2 answers
  • Ingrid is participating in a relay race. While jogging at 9 km/h, she tosses a relay stick at 16 km/h to her teammate, who is st
    7·2 answers
  • Which statements describe the characteristics of asteroids? Check all that apply. formed 4.6 billion years ago orbit the Sun bey
    7·2 answers
  • A girl at an airport rolls a ball north on a moving walking that moves east. If the ball’s speed with respect to the walkway is
    5·1 answer
  • Both Sony's PlayStation Network and FedEx's systems were developed and are continuously updated to help the companies ________.
    14·1 answer
  • A swimmer standing near the edge of a lake notices a cork bobbing in the water. While watching for one minute, she notices the c
    10·1 answer
  • g The international space station has an orbital period of 93 minutes at an altitude (above Earth's surface) of 410 km. A geosyn
    13·1 answer
  • An electron with a charge value of 1.6 x 10-19 C is moving in the presence of an electric field of 400 N/C. What force does the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!