Let m represent the number of miles this guy runs in a day.
He runs every day, so the minimum number of miles has to be greater than 0.
According to the problem statement, the max number of miles is 3.5 miles or less.
Translate this into a (symbolic) inequality.
Answer:

Four raised to the one-sixth power
Step-by-step explanation:
We want to simplify: ![\dfrac{\sqrt{4} }{\sqrt[3]{4} }](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%7B4%7D%20%7D%7B%5Csqrt%5B3%5D%7B4%7D%20%7D)
First, we apply the fractional law of indices to each term.
![\text{If } a^{1/x}=\sqrt[x]{a},$ then:\\\sqrt{4}=4^{1/2}\\\sqrt[3]{4}=4^{1/3}](https://tex.z-dn.net/?f=%5Ctext%7BIf%20%20%7D%20a%5E%7B1%2Fx%7D%3D%5Csqrt%5Bx%5D%7Ba%7D%2C%24%20then%3A%5C%5C%5Csqrt%7B4%7D%3D4%5E%7B1%2F2%7D%5C%5C%5Csqrt%5B3%5D%7B4%7D%3D4%5E%7B1%2F3%7D)
We then have:
![\dfrac{\sqrt{4} }{\sqrt[3]{4} }=\dfrac{4^{1/2} }{4^{1/3} }\\$Applying the division law of indices: \dfrac{a^m }{a^n }=a^{m-n}\\\dfrac{4^{1/2} }{4^{1/3} }=4^{1/2-1/3}\\\\=4^{1/6}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%7B4%7D%20%7D%7B%5Csqrt%5B3%5D%7B4%7D%20%7D%3D%5Cdfrac%7B4%5E%7B1%2F2%7D%20%7D%7B4%5E%7B1%2F3%7D%20%7D%5C%5C%24Applying%20the%20division%20law%20of%20indices%3A%20%5Cdfrac%7Ba%5Em%20%7D%7Ba%5En%20%7D%3Da%5E%7Bm-n%7D%5C%5C%5Cdfrac%7B4%5E%7B1%2F2%7D%20%7D%7B4%5E%7B1%2F3%7D%20%7D%3D4%5E%7B1%2F2-1%2F3%7D%5C%5C%5C%5C%3D4%5E%7B1%2F6%7D)
The correct option is B.
Answer:

Step-by-step explanation:
We are given that
Initial value problem
, y(3)=4
Substitute the value 
When t=3 and y=4 then
z=3+4=7

Differentiate z w.r.t t
Then, we get



Integrate on both sides


Substitute t=3 and z=7
Then, we get




Substitute the value of C then we get





