Answer:
The mean should be 64.63 ounces.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

The quality control inspector wants to adjust the machine such that at least 95% of the jugs have more than 64 ounces of detergent. What should the mean amount of detergent poured by this machine into these jugs be?
This is
, for which X = 64 will have a pvalue of 1-0.95 = 0.05. So when X = 64, Z = -1.645.





The mean should be 64.63 ounces.