Answer:
Rydberg constant 3.3 x 10¹⁵ Hertz is equal to 1.090 x 10⁷ m⁻¹
Explanation:
Given;
Rydberg constant as 3.3 x 10¹⁵ Hz
1 Rydberg constant = 3.3 x 10¹⁵ Hz
1 Rydberg constant = 1.090 x 10⁷ m⁻¹
Therefore, Rydberg constant 3.3 x 10¹⁵ Hertz is equal to 1.090 x 10⁷ m⁻¹
<span>At standard temperature and pressure 22.4 l of an ideal gas would contain 1 mole. in order to find the change in moles we must look at the ideal gas law PV=nRT where P=Pressure V=volume n=Moles R= Gas constant T= Temperature. To simplify this equation we will be using the gas constant at .08206 L-atm/mol-K. We must first convert 100c to k which is 373.15. Then we can plug the values into our equation which gives us (2atm)(14.5 l)=(n)(.08206 L-atm/mol-K)(373.15). After some basic algebra we get the moles to equal roughly .95 which is .05 moles less than our original system.</span>
Answer : Option A) Ethanoic Acid
Explanation : Ethanoic acid has the lowest vapor pressure i.e 0.08 atm at the temperature of 50°C compared to the other given options.
The vapour pressure of propanone at 50°C is 0.84 atm
Ethanol has vapour pressure as 0.30 atm at 50°C
water has vapour pressure of 0.12 atm at 50°C.
Answer:
19
Explanation:
The total distance traveled by the toy cay would be 19 cm.
The total distance traveled should not be mistaken for total displacement. While displacement measures the distance and direction from the starting position of the toy car relative to its final position, the total distance traveled is calculated by adding all the movements of the toy car together. Hence;
Total distance traveled = 9 + 4 + 6 = 19 cm