Answer:
1. Cu
2. Cu
3. 2 electrons.
Explanation:
Step 1:
The equation for the reaction is given below:
3Cu(s) + 8HNO3(aq) -> 2NO(g) 3Cu(NO3)2(aq) + 4H2O(l)
Step 2:
Determination of the change of oxidation number of each element present.
For Cu:
Cu = 0 (ground state)
Cu(NO3)2 = 0
Cu + 2( N + 3O) = 0
Cu + 2(5 + (3 x -2)) =0
Cu + 2 (5 - 6) = 0
Cu + 2(-1) = 0
Cu - 2 = 0
Cu = 2
The oxidation number of Cu changed from 0 to +2
For N:
HNO3 = 0
H + N + 3O = 0
1 + N + (3 x - 2) = 0
1 + N - 6 = 0
N = 6 - 1
N = 5
NO = 0
N - 2 = 0
N = 2
The oxidation number of N changed from +5 to +2
The oxidation number of oxygen and hydrogen remains the same.
Note:
1. The oxidation number of Hydrogen is always +1 except in hydride where it is - 1
2. The oxidation number of oxygen is always - 2 except in peroxide where it is - 1
Step 3:
Answers to the questions given above
From the above illustration,
1. Cu is oxidize because its oxidation number increased from 0 to +2 as it loses electron.
2. Cu is the reducing agent because it reduces the oxidation number of N from +5 to +2.
3. The reducing agent i.e Cu transferred 2 electrons to the oxidising agent HNO3 because its oxidation number increase from 0 to +2 as it loses its electrons. This means that Cu transfer 2 electrons.
Answer:
The fraction of energy used to increase the internal energy of the gas is 0.715
Explanation:
Step 1: Data given
Cv for nitrogen gas = 20.8 J/K*mol
Cp for nitrogen gas = 29.1 J/K*mol
Step 2:
At a constant volume, all the heat will increase the internal energy of the gas.
At constant pressure, the gas expands and does work., if the volume changes.
Cp= Cv + R
⇒The value needed to change the internal energy is shown by Cv
⇒The work is given by Cp
To find what fraction of the energy is used to increase the internal energy of the gas, we have to calculate the value of Cv/Cp
Cv/Cp = 20.8 J/K*mol / 29.1 J/K*mol
Cv/Cp = 0.715
The fraction of energy used to increase the internal energy of the gas is 0.715
Answer:
Explanation:Since the compound X has no net-dipole moment so we can ascertain that this compound is not associated with any polarity.
hence the compound must be overall non-polar. The net dipole moment of compound is zero means that the vector sum of individual dipoles are zero and hence the two individual bond dipoles associated with C-Cl bond must be oriented in the opposite directions with respect to each other.]
So we can propose that compound X must be trans alkene as only in trans compounds the individual bond dipoles cancel each other.
If one isomer of the alkene is trans then the other two isomers may be cis .
Since the two alkenes give the same molecular formula on hydrogenation which means they are quite similar and only slightly different.
The two possibility of cis structures are possible:
in the first way it is possible the one carbon has two chlorine substituents and the carbon has two hydrogens.
Or the other way could be that two chlorine atoms are present on the two carbon atoms in cis manner that is on the same side and two hydrogens are also present on the different carbon atoms in the same manner.
Kindly refer the attachments for the structure of compounds:
Molarity = number of moles of solute/liters of solution
number of moles of solute = molarity x liters of solution
Part (a): <span>30.00 ml of 0.100m Cacl2
number of moles of CaCl2 = 0.1 x 0.03 = 3x10^-3 moles
1 mole of CaCl2 contains 2 moles of chlorine, therefore 3x10^-3 moles of CaCl2 contains 6x10^-3 moles of chlorine
Part (b): </span><span>10.0 ml of 0.500m bacl2
number of moles of BaCl2 = 0.5 x 0.01 = 5x10^-3 moles
1 mole of BaCl2 contains 2 moles of chlorine, therefore 5x10^-3 moles of BaCl2 contains 10x10^-3 moles of chlorine
Part (c): </span><span>4.00 ml of 1.000m nacl
number of moles of NaCl = 1 x 0.004 = 0.004 moles
1 mole of NaCl contains 1 mole of chlorine, therefore 4x10^-3 moles of NaCl contains 4x10^-3 moles of chlorine
Part (d): </span><span>7.50 ml of 0.500m fecl3
number of moles of FeCl3 = 0.5 x 0.0075 = 3.75x10^-3 moles
1 mole of FeCl3 contains 3 moles of chlorine, therefore 3.75x10^-3 moles of FeCl3 contains 0.01125 moles of chlorine
Based on the above calculations, the correct answer is (d)</span>