Answer:
it is called waning and waxing It's because the moon is a world in space, just as Earth is. Like Earth, the moon is always half illuminated by the sun; the round globe of the moon has a day side and a night side. And, like Earth, the moon is always moving through space. it is also because of the position of the earth and the moon.
Explanation:
The equilibrium constant of a reaction is defined as:
"The ratio between equilibrium concentrations of products powered to their reaction quotient and equilibrium concentration of reactants powered to thier reaction quotient".
The reaction quotient, Q, has the same algebraic expressions but use the actual concentrations of reactants.
To solve this question we need this additional information:
<em>For this reaction, K = 6.0x10⁻² and the initial concentrations of the reactants are:</em>
<em>[N₂] = 4.0M; [NH₃] = 1.0x10⁻⁴M and [H₂] = 1.0x10⁻²M</em>
<em />
Thus, for the reaction:
N₂ + 3H₂ ⇄ 2NH₃
The equilibrium constant, K, of this reaction, is defined as:
![K = 6.0x10^{-2} = \frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K%20%3D%206.0x10%5E%7B-2%7D%20%3D%20%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
And Q, is:
![Q = \frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
Where actual concentrations are:
[NH₃] = 1.0x10⁻⁴M
[N₂] = 4.0M
[H₂] = 2.5x10⁻¹M
Replacing:
![Q = \frac{[1.0x10^{-4}]^2}{[4.0][2.5x10^{-1}]^3}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cfrac%7B%5B1.0x10%5E%7B-4%7D%5D%5E2%7D%7B%5B4.0%5D%5B2.5x10%5E%7B-1%7D%5D%5E3%7D)
<h3>Q = 1.6x10⁻⁷</h3>
As Q < K,
<h3>The chemical system will shift to the right in order to produce more NH₃</h3>
Learn more about chemical equililbrium in:
brainly.com/question/24301138
Answer:
The value of the of ΔG for the new reaction will be same as the given value of -20kcal/mol.
Explanation:
In an enzyme-catalyzed reaction, the concentration or amount of enzyme will not affect the equilibrium constant of the reaction due to which ΔG for the reaction will remain unaffected. Here enzymes are acting as a catalyst that cannot alter law thermodynamics and equilibrium of the reaction.
Since the enzyme amount will not affect the equilibrium of the reaction, the value of ΔG will remain the same as given -20 kcal/mol.
Answer:
RbOH → Rb⁺ + OH⁻
As the hydroxide can gives the OH⁻ in water, it is considered as an Arrhenius's base
Explanation:
Arrhenius theory states that a compound is considered a base, if the compound can generate OH⁻ ions in aqueous solution.
Our compound is the RbOH.
When it is put in water, i can dissociate like this:
RbOH → Rb⁺ + OH⁻
As the hydroxide can gives the OH⁻ in water, it is considered as an Arrhenius's base
Answer: Option (c) is the correct answer.
Explanation:
A water molecule is made up of two hydrogen atoms and one oxygen atom. Due to the difference in electronegativity of hydrogen and oxygen, the electrons are pulled more towards oxygen atom.
As a result, a partial positive charge will develop on hydrogen atom and a partial negative charge will develop on oxygen atom.
Thus, we can conclude that adjacent water molecules interact through the electrical attraction between the hydrogen of one water molecule and the oxygen of another water molecule.