answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
puteri [66]
2 years ago
15

Hot carbon dioxide exhaust gas at 1 atm is being cooled by flat plates. The gas at 220 °C flows in parallel over the upper and l

ower surfaces of a 1.5-m-long flat plate at a velocity of 3 m/s.
If the flat plate surface temperature is maintained at 80 °C, determine (a) the local convection heat transfer coefficient at 1 m from the leading edge, (b) the average convection heat transfer coefficient over the entire plate, and (c) the total heat flux transfer to the plate.
Engineering
1 answer:
sergeinik [125]2 years ago
8 0

The local convection heat transfer coefficient at 1 m from the leading edge is  0.44 \frac{W}{m^{2} \times K} ,  the average convection heat transfer coefficient over the entire plate is  0.293 \frac{W}{m^{2} \times K}and the total heat flux transfer to the plate is 61.6 KJ.

Explanation:

It is case of heat and mass transfer in which due to temperature difference between gas  and surface. Further temperature  boundary layer will developed on flat plate in longitudinal direction.  

Hot carbon dioxide exhaust gas

physical properties

r= 1.05 \frac{kg}{m^{3}}

c_p = 1.02 \frac{kJ}{Kg \times K}

m= 231 \times 10^{7}  \frac{N \times s }{m^2}

υ = 21.8 \times 10^{6}  \frac{m^2}{s}

k = 32.5 \times 10^{3} \frac{W}{m \times K}

\alpha = 30.1 \times 10^{6} \frac{m^{2}}{s}

Pr = 0.725

Apart from these other data arr given below,

v= 3 \frac{m}{s}  \\ p= 1 atm \\ L_c = 1.5m \\T_g= 220 C \\ T_s = 80 C

To find the local convection heat transfer coefficient at 1 m from the leading edge, we use correlation used for laminar flow over flat plate,

Nu = \frac{ h \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

where h= Average heat transfer coefficient

           L= Length of a plate

           k= Thermal Conductivity of carbon dioxide

           Re = Reynold's Number

           Pr  = Prandtle Number

(a) Convection heat transfer coefficient at 1 m from the leading edge

    is referred as local convection heat transfer coefficient.

   

   To find convection heat transfer coefficient at 1 m from leading edge,

  Nu = \frac{ h_local \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

  Here, first we have to find Re and Pr,

   Re = \frac{r \times v \times L}{m}

   Re = \frac{1.0594 \times 3 \times 1}{231 \times 10^{7}}

   Re = 20.63 \times  10^{-10}

   Pr number is take from physical property data and Pr is 0.725.

   Putting value of Re and Pr in main equation,

   we get

   Nu = \frac{ h_local \times 1 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   = 32.5 \times 10^{3} \times  0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   =  0.44 \frac{W}{m^{2} \times K}

(b)  To find average convection heat transfer coefficient,

      it can be find out as case (a), only difference is that instead of L=1 m,        L=1.5 m would come,  

   Therefore,

    Nu = \frac{ h \times 1.5 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    Finally,

      h  = \frac{0.44}{1.5}

      h  = 0.293 \frac{W}{m^{2} \times K}

(C) Total heat flux transfer to the plate is found out by,

     Q = h \times (T_g - T_s)

     Q = 0.293 \times (220-80) \\ Q= 0.293 \times 140  \\ Q= 61.6 KJ

     

     

   

   

     

   

     

   

   

 

   

   

   

   

You might be interested in
Is an isothermal process necessarily internally reversible? Explain your answer with an example
torisob [31]

Answer:

please give me brainlist and follow

Explanation:

Example of an irreverseble isothermal process is mixing of two fluids on the same temperature - it requires a lot of energy to unmix Jack and coke. ... Example of an reversible process with changing temperature is isentropic expansion.

5 0
1 year ago
Consider insulation on a circular pipe For the same thickness and type of insulation, the thermal resistance of the insulation i
leonid [27]

Answer:

b). The same for all pipes independent of the diameter

Explanation:

We know,

R_{conduction}=\frac{ln(\frac{r_{2}}{r_{1}})}{2\pi LK}

R_{convection}=\frac{1}{h(2\pi r_{2}L)}

From the above formulas we can conclude that the thermal resistance of a substance mainly depends upon heat transfer coefficient,whereas radius has negligible effects on heat transfer coefficient.

We also know,

Factors on which thermal resistance of insulation depends are :

1. Thickness of the insulation

2. Thermal conductivity of the insulating material.

Therefore from above observation we can conclude that the thermal resistance of the insulation is same for all pipes independent of diameter.

5 0
2 years ago
An excited electron in an Na atom emits radiation at a wavelength 589 nm and returns to the ground state. If the mean time for t
11Alexandr11 [23.1K]

Answer:   Inherent width in the emission line: 9.20 × 10⁻¹⁵ m or 9.20 fm

                length of the photon emitted: 6.0 m

Explanation:

The emitted wavelength is 589 nm and the transition time is ∆t = 20 ns.

Recall the Heisenberg's uncertainty principle:-

                                 ∆t∆E ≈ h ( Planck's Constant)

The transition time ∆t corresponds to the energy that is ∆E

E=h/t = \frac{(1/2\pi)*6.626*10x^{-34} J.s}{20*10x^{-9} } = 5.273*10x^{-27} J =  3.29* 10^{-8} eV.

The corresponding uncertainty in the emitted frequency ∆v is:

∆v= ∆E/h = (5.273*10^-27 J)/(6.626*10^ J.s)=  7.958 × 10^6 s^-1

To find the corresponding spread in wavelength and hence the line width ∆λ, we can differentiate

                                                    λ = c/v

                                                    dλ/dv = -c/v² = -λ²/c

Therefore,

      ∆λ = (λ²/c)*(∆v) = {(589*10⁻⁹ m)²/(3.0*10⁸ m/s)} * (7.958*10⁶ s⁻¹)

                                 =  9.20 × 10⁻¹⁵ m or 9.20 fm

     The length of the photon (<em>l)</em> is

l = (light velocity) × (emission duration)

  = (3.0 × 10⁸  m/s)(20 × 10⁻⁹ s) = 6.0 m          

                                                   

6 0
2 years ago
______process in sheet metal is used for producing fluid tight joints. A - Hemming B- Seaming C-Beading D-Roll forming
SOVA2 [1]

Answer:

option B

Explanation:

The correct answer is option B

Seaming is an operation in which the edges are folded over another part to achieve the tight fit.

Seaming is generally used to join other parts together.

So, seaming is generally used for producing fluid-tight joints.

This process is used in the food industry on canned goods, metal roofing, and in the automotive industry.  

5 0
2 years ago
As the porosity of a refractory ceramic brick increases:
ivolga24 [154]

Answer:

A) strength decreases, chemical resistance decreases, and thermal insulation increases

Explanation:

Strength always decreases, chemical resistence decreases, and thermal condictivity must be reduced therefore themal insulation must increase.

7 0
2 years ago
Other questions:
  • Define a) Principal Plane b) Principal Stress c) anelasticity d) yield point e) ultimate tensile stress f) hardness g) toughness
    5·1 answer
  • A 0.9% solution of NaCl is considered isotonic to mammalian cells. what molar concentration is this?
    10·1 answer
  • A meter stick can be read to the nearest millimeter and a travelling microscope can be read to the nearest 0.1 mm. Suppose you w
    11·1 answer
  • . Were you able to observe ???? = 0 in the circuit you constructed during lab? Why or why not? Hint: What value of resistance wo
    6·1 answer
  • 2.31 LAB: Simple statistics Part 1 Given 4 integers, output their product and their average, using integer arithmetic. Ex: If th
    5·2 answers
  • 4-6. A vertical cylindrical storage vessel is 10 m high and 2 m in diameter. The vessel contains liquid cyclohexane currently at
    10·1 answer
  • Can crushers help us recycle in a space efficient way which is good for saving the earth and for giving you more room in your ap
    7·1 answer
  • Consider water at 27°C in parallel flow over an isothermal, 1‐m‐long flat plate with a velocity of 2 m/s. a) Plot the variation
    15·1 answer
  • Five Kilograms of continuous boron fibers are introduced in a unidirectional orientation into of an 8kg aluminum matrix. Calcula
    9·1 answer
  • A rectification column is fed 100 kg mol/h of a mixture of 50 mol % benzene and 50 mol % toluene at 101.32 kPa abs pressure. The
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!