answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
2 years ago
13

A 1500 kg car enters a section of curved road in the horizontal plane and slows down at a uniform rate from a speed of 100 km/h

at A to a speed of 50 km/h as it passes C.
The radius of curvature p of the road at A is 400 m and at C is 80 m.

Determine the total horizontal force exerted by the road on the tires at positions A, B, and C.

Point B is the inflection point where the curvature changes direction, s is the length of the road ABC in meters

Physics
1 answer:
Mandarinka [93]2 years ago
6 0

Answer:

Incomplete question check attachment for diagram

Explanation:

Given that,

Mass of car

M = 1500kg

Enter curve at Point A with speed of

Va = 100km/hr = 100× 1000/3600

Va = 27.78m/s

The car was slow down at a constant rate till it gets to point C at  speed of

Vc = 50km/r = 50×1000/3600

Vc = 13.89m/s

Radius of curvature at point A

p = 400m

Radius of curvature at point B

p = 80m

The distance from point A to point B as given in the attachment is

S=200m

We want to find the total horizontal  forces at point A, B and C exerted by the road on the tire

The constant tangential acceleration can be calculated using equation of motion

Vc² = Va² + 2as

13.89² = 27.78² + 2 × a × 200

192.9 = 771.6 + 400a

400a = 192.9—771.6

400a = -578.7

a = -578.7 / 400

a = —1.45 m/s²

at = —1.45m/s²

The tangential acceleration is -1.45m/s² and it is negative because the car was decelerating

Since the car is slowing down at a constant rate, the tangential acceleration is equal at every point

At point A

at = -1.45m/s²

At point B

at = -1.45m/s²

At point C

at = -1.45m/s²

Now,

We can calculate the normal component of acceleration(centripetal acceleration) at each point since we know the radius of curvature

The centripetal acceleration is calculated using

ac = v²/ p

At point A ( p = 400)

an = Va²/p = 27.78² / 400

an = 1.93 m/s²

At point B (p = ∞), since point B is point of inflection

Then,

an = Vb²/p =  Vb/∞ = 0

an = 0

At point C ( p = 80m)

an = Vc²/p = 13.89² / 80 = 2.41m/s²

an = 2.41 m/s²

Then,

The tangential force is

Ft = M•at

Ft = 1500 × 1.45

Ft = 2175 N.

Since tangential acceleration is constant, then, this is the tangential force at each point A, B and C

Now, normal force

Point A ( an = 1.93m/s²)

Fn = M•an

Fn = 1500 × 1.93

Fn = 2895 N

At point B (an=0)

Fn = M•an

Fn = 0 N

At point C (an= 2.41m/s²)

Fn = M•an

Fn = 1500 × 2.41

Fn = 3615 N.

Then, the horizontal force acting at each point is

Using Vector of right angle triangle

F = √(Fn² + Ft²)

At point A

Fa = √(2895² + 2175²)

Fa = √13,111,650

Fa = 3621 N

At point B

Fb = √(0² + 2175²)

Fb = √2175²

Fb = 2175 N

At point C

Fc = √(3615² + 2175²)

Fc = √17,798,850

Fc = 4218.88 N

Fc ≈ 4219N

You might be interested in
If a cliff jumper leaps off the edge of a 100m cliff, how long does she fall before hitting the water? (assume zero air resistan
andrew-mc [135]
<h2>Answer:</h2>

<em>Hello, </em>

<h3><u>QUESTION)</u></h3>

Assuming that the initial velocity of the jumper is zero, on Earth any freely falling object has an acceleration of 9.8 m/s².  

<em>✔ We have : a = v/Δt = ⇔ Δt = v/a </em>

  • Δt = (√2xgxh)/9,8
  • Δt = (14√10)/9,8
  • Δt ≈ 4,5 s

4 0
1 year ago
A boy is standing motionless on a skateboard. He throws a basketball forward. Describe his motion.
weqwewe [10]

Answer:

Random motion

Explanation:

If the boy throws the basketball forward while at a position on the skateboard, the motion of the ball will be a random motion since we are not told if the ball is moving on a straight line when thrown forward.

In this case, the boy will tend to move in the direction of the ball. Since the ball is moving in a random manner, the motion of the boy will also be a random motion.

A random motion is a motion of a body in a zig zag manner. It is also known as Brownian motion e.g motion of a buzzing mosquito, motion of a smoke coming out of a chimney etc.

8 0
2 years ago
You want to move a heavy box with mass 30.0 kg across a carpeted floor. You pull hard on one of the edges of the box at an angle
charle [14.2K]

Answer:

a=5.54m/s^{2}

Explanation:

The net force, F_{net} of the box is expressed as a product of acceleration and mass hence

F_{net}=ma where m is mass and a is acceleration

Making a the subject, a= \frac {F_{net}}{m}

From the attached sketch,  

∑ F_{net}=Fcos\theta-F_{f} where F_{f} is frictional force and \theta is horizontal angle

Substituting ∑ F_{net} as F_{net} in the equation where we made a the subject

a= \frac {Fcos\theta-F_{f}}{m}

Since we’re given the value of F as 240N, F_{f} as 41.5N, \theta as 30^{o} and mass m as 30kg

a= \frac {240cos30-41.5}{30.0}=\frac {166.346}{30.0}=5.54m/s^{2}

6 0
2 years ago
A proton initially moves left to right along the x-axis at a speed of 2.00 x 103 m/s. It moves into an uniform electric field, w
FinnZ [79.3K]

Answer:

E = 1.04*10⁻¹ N/C

Explanation:

Assuming no other forces acting on the proton than the electric field, as this is uniform, we can calculate the acceleration of the proton, with the following kinematic equation:

vf^{2} -vo^{2} = 2*a*x

As the proton is coming at rest after travelling 0.200 m to the right,  vf = 0, and x = 0.200 m.

Replacing this values in the equation above, we can solve for a, as follows:

a = \frac{vo^{2}*mp}{2*x} = \frac{(2.00e3m/s)^{2}}{2*0.2m} = 1e7 m/s2

According to Newton´s 2nd Law, and applying the definition of an electric field, we can say the following:

F = mp*a = q*E

For a proton, we have the following values:

mp = 1.67*10⁻²⁷ kg

q = e = 1.6*10⁻¹⁹ C

So, we can solve for E (in magnitude) , as follows:

E = \frac{mp*a}{e} =\frac{1.67e-27kg*1e7m/s2}{1.6e-19C} = 1.04e-1 N/C

⇒ E = 1.04*10⁻¹ N/C

5 0
2 years ago
A kitten sits in a lightweight basket near the edge of a table. A person accidentally knocks the basket off the table. As the ki
Lesechka [4]

Answer:

the answer is B

Explanation: this was actually an ap exam question a few years back. the reason for answer B is that the only force being applied to the kitten is the force of gravity after being pushed.

4 0
2 years ago
Other questions:
  • Problem: An ice hockey player hits a puck of mass 0.15 kilograms with a force of 100 newtons in the horizontal direction. What i
    7·2 answers
  • A beaker contain 200mL of water<br> What is its volume in cm3 and m3
    5·2 answers
  • For flowing water, what is the magnitude of the velocity gradient needed to produce a shear stress of 1.0 n/m2 ?
    8·2 answers
  • Suppose that a rectangular toroid has 2,000 windings and a self-inductance of 0.060 H. If the height of the rectangular toroid i
    13·1 answer
  • A stationary 1.67-kg object is struck by a stick. The object experiences a horizontal force given by F = at - bt2, where t is th
    13·1 answer
  • An object is attached to a hanging unstretched ideal and massless spring and slowly lowered to its equilibrium position, a dista
    14·1 answer
  • A meter stick balances at the 50.0-cm mark. If a mass of 50.0 g is placed at the 90.0-cm mark, the stick balances at the 61.3-cm
    13·2 answers
  • A foam ball of mass 0.150 g carries a charge of -2.00 nC. The ball is placed inside a uniform electric field, and is suspended a
    5·1 answer
  • a) Suppose that the current in the solenoid is I(t). Within the solenoid, but far from its ends, what is the magnetic field B(t)
    12·1 answer
  • A 0.250 kgkg toy is undergoing SHM on the end of a horizontal spring with force constant 300 N/mN/m. When the toy is 0.0120 mm f
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!