F(x) = (x - 8)2-6
if you simplify the equation you’re left with f(x) = (x - 8) - 4. there are two transformations that can be derived from this equation: translate horizontally right 8 and translate vertically down 4. because the parabola starts in quadrant 1, the parabola needs to be translated right opposed to left to match this. since the parabola’s vertex is in the negative quadrant 4, the function needs to be moved down which matches the second vertical translation the equation gives us.
Answer:
The standard deviation of the number of rushing yards for the running backs that season is 350.
Step-by-step explanation:
Consider the provided information.
The mean number of rushing yards for the running backs that season is 790 yards. One running back had 1,637 rushing yards for the season, which is 2.42 standard deviations above the mean number of rushing yards.
Here it is given that mean is 790 and 1637 is 2.42 standard deviations above the mean.
Use the formula: 
Here z is 2.42 and μ is 790, substitute the respective values as shown.



Hence, the standard deviation of the number of rushing yards for the running backs that season is 350.
Answer:

In order to find the variance we need to find first the second moment given by:

And replacing we got:

The variance is calculated with this formula:
![Var(X) = E(X^2) -[E(X)]^2 = 0.33 -(0.15)^2 = 0.3075](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%200.33%20-%280.15%29%5E2%20%3D%200.3075)
And the standard deviation is just the square root of the variance and we got:

Step-by-step explanation:
Previous concepts
The expected value of a random variable X is the n-th moment about zero of a probability density function f(x) if X is continuous, or the weighted average for a discrete probability distribution, if X is discrete.
The variance of a random variable X represent the spread of the possible values of the variable. The variance of X is written as Var(X).
Solution to the problem
LEt X the random variable who represent the number of defective transistors. For this case we have the following probability distribution for X
X 0 1 2 3
P(X) 0.92 0.03 0.03 0.02
We can calculate the expected value with the following formula:

And replacing we got:

In order to find the variance we need to find first the second moment given by:

And replacing we got:

The variance is calculated with this formula:
![Var(X) = E(X^2) -[E(X)]^2 = 0.33 -(0.15)^2 = 0.3075](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%200.33%20-%280.15%29%5E2%20%3D%200.3075)
And the standard deviation is just the square root of the variance and we got:

Answer:
Rs. X + Rs. 10y
Step-by-step explanation:
Charge for 40 km travel = Rs. x per km
Charge for every additional km traveled = Rs. y
Amount paid for 50 km
Fixed charge for 40km = Rs. X
Additional km = 50 - 40 = 10 kilometer
Total charge :
Rs. X + Rs. 10y