Answer:median
Step-by-step explanation:
i just took the test and that was the correct answer for me
Note necessary facts about isosceles triangle ABC:
- The median CD drawn to the base AB is also an altitude to tha base in isosceles triangle (CD⊥AB). This gives you that triangles ACD and BCD are congruent right triangles with hypotenuses AC and BC, respectively.
- The legs AB and BC of isosceles triangle ABC are congruent, AC=BC.
- Angles at the base AB are congruent, m∠A=m∠B=30°.
1. Consider right triangle ACD. The adjacent angle to the leg AD is 30°, so the hypotenuse AC is twice the opposite leg CD to the angle A.
AC=2CD.
2. Consider right triangle BCD. The adjacent angle to the leg BD is 30°, so the hypotenuse BC is twice the opposite leg CD to the angle B.
BC=2CD.
3. Find the perimeters of triangles ACD, BCD and ABC:



4. If sum of the perimeters of △ACD and △BCD is 20 cm more than the perimeter of △ABC, then

5. Since AC=BC=2CD, then the legs AC and BC of isosceles triangles have length 20 cm.
Answer: 20 cm.
Answer:
The correct option is B)
.
Step-by-step explanation:
Consider the provided information.
Angle A C B is 90 degrees and angle A B C is 35 degrees.
The required figure is shown below:
We need to find the value of c.
Use the trigonometric function: 


Hence, the correct option is B)
.
Answer:
0.514
Step-by-step Explantion:
Denominator = 500 = 2^2 * 5^3
257/500 = 257/2^2*5^3 = 2*257/2*2^2*5^3 = 514/2^3*5^3 = 514/(2*5)^3 = 514/10^3 = 0.514