Nope, I disagree with the former answer. The answer is definitely Z. <u>W area</u> (boxed with red outline) is represented as the hot reservoir while <u>Z area</u> is the cold reservoir (boxed with blue outline). X area is the heat engine itself and Y area is the work produced from thermal energy from hot reservoir. Typically, all heat engines lose some heat to the environment (based from the second law of thermodynamics) that is symbolically illustrated by the lost energy in the cold reservoir. This lost thermal energy is basically the unusable thermal energy. The higher thermal energy lost, the less efficient your heat engine is.
Given:
Ca = 3Cb (1)
where
Ca = heat capacity of object A
Cb = heat capacity f object B
Also,
Ta = 2Tb (2)
where
Ta = initial temperature of object A
Tb = initial temperature of object B.
Let
Tf = final equilibrium temperature of both objects,
Ma = mass of object A,
Mb = mass of object B.
Assuming that all heat exchange occurs exclusively between the two objects, then energy balance requires that
Ma*Ca*(Ta - Tf) = Mb*Cb*(Tf - Tb) (3)
Substitute (1) and (2) into (3).
Ma*(3Cb)*(2Tb - Tf) = Mb*Cb*(Tf - Tb)
3(Ma/Mb)*(2Tb - Tf) = Tf - Tb
Define k = Ma/Mb, the ratio f the masses.
Then
3k(2Tb - Tf) = Tf - Tb
Tf(1+3k) = Tb(1+6k)
Tf = [(1+6k)/(1+3k)]*Tb
Answer:

where
I’m not completely sure but most likely is is the 10 mile bike ride, I hope I can help! (:
Answer:
Explanation:
It is required that the weight of Joe must prevent Simon from being pulled down . That means he is not slipping down but tends to be towed down . So in equilibrium , force of friction will act in upward direction on Simon.
Let in equilibrium , tension in rope be T
For balancing Joe
T = M g
For balancing Simon
friction + T = mgsinθ
μmgcosθ+T = mgsinθ
μmgcosθ+Mg = mgsinθ
M = (msinθ - μmcosθ)
M = m(sinθ - μcosθ)