Answer:
0.008945 atm
Explanation:
In the reaction:
2H2S(g) ⇌ 2 H2(g) + S2(g)
Kp is defined as:

<em>Where P is the pressure of each compound in equilibrium.</em>
If initial pressure of H2S is 3.00atm, concentrations in equilibrium are:
H2S = 3.00 atm - 2X
H2 = 2X
S2: = X
Replacing:


0 = 4X³ - 1.28x10⁻⁶X² + 1.92x10⁻⁶X - 2.88x10⁻⁶
Solving for X:
X = 0.008945 atm
As in equilibrium, pressure of S2 is X, <em>pressure is 0.008945 atm</em>
Answer:
The answer to your question is V2 = 825.5 ml
Explanation:
Data
Volume 1 = 750 ml
Temperature 1 = 25°C
Volume 2= ?
Temperature 2 = 55°C
Process
Use the Charles' law to solve this problem
V1/T1 = V2/T2
-Solve for V2
V2 = V1T2 / T1
-Convert temperature to °K
T1 = 25 + 273 = 298°K
T2 = 55 + 273 = 328°K
-Substitution
V2 = (750 x 328) / 298
-Simplification
V2 = 246000 / 298
-Result
V2 = 825.5 ml
To find average atomic mass you multiply the mass of each isotope by its percentage, and then add the values up.
35 * 0.90 + 37 * 0.08 + 38 * 0.02 = 35.22
Average atomic mass closest to 35.22 amu.
Diluted by a factor of two means that we double the volume of the solution by adding an equal volume of the water.
if we diluted it by a factor of one so the new concentration = 0.1/2=0.05 M and diluted by a factor of two so, the new concentration will be 0.05/2 = 0.025 M
1. Answer;
Equation;
-NaCl(aq) → Na{+}(aq) + Cl{-}(aq)
Explanation;
-The polar property of water allows ionic compounds such as sodium chloride to dissolve in water. (sodium chloride is an ionic compound).
-Sodium chloride dissociates in water into sodium ions and chloride ions as shown by the equation. Water molecules surrounds the negatively charged chloride ions and positive sodium ions and pulls them away into solution.
2. Answer;
Equation;
Fe(ClO4)3(aq) → Fe 3+(aq) + 3ClO4 - (aq)
Explanation;
Iron (iii) perchlorate (Fe(ClO4)3 dissociates in water into iron (iii) ion and perchlorate ion. Iron (iii) ion is positively charged while the perchlorate ion is negatively charged, they are pulled apart by the polar water molecules, a process called dissociation.
-