answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sphinxa [80]
2 years ago
9

Which compound lauric acid or sucrose is more soluble in water justify your answers in terms of intermolecular forces?

Chemistry
1 answer:
iogann1982 [59]2 years ago
3 0
Answer is: sucrose is more soluble in water.
Solubility of sucrose (C₁₂H₂₂O₁₁) is about 2000 g in one liter of water (25°C) and solubility of lauric acid (C₁₂H₂₄O₂) is approximately 0,06 g approximately.
That is because sucrose has stronger intermolecular forces (hydrogen bond), Sucrose has more oxygen, more oxygen means more intermolecular bond with hydrogen.
You might be interested in
The concentration of hydrogen peroxide in a hair bleach is 0.050 mol dm–3. Use your answer from (b) to calculate the dilution fa
stellarik [79]

Answer:

0.03

Explanation:0.050 -

8 0
2 years ago
A rod, X has a positive charge of 8. An otherwise identical rod, Y has a negative charge of 4. The rods are touched together, an
gtnhenbr [62]

Answer:

1.  electrons

2. From "Y" to "X"

Explanation:

1. Electrons move between the rod since the electrons are the only charge carriers which are free to move.

2. The particles move from from "Y" to "X"  since the electrons are the only charge carriers which are free to move. The positive charge on rod x is due to a deficit of electrons while the negative charge on rod Y is due to the excess of electrons. When the rods come together, the electrons move from "Y" to "X" since the electrons are the only charge carriers which are free to move.

4 0
1 year ago
The pKs of succinic acid are 4.21 and 5.64. How many grams of monosodium succinate (FW = 140 g/mol) and disodium succinate (FW =
Varvara68 [4.7K]

Answer:

9.744g of monosodium succinate.

4.925g of disodium succinate.

Explanation:

To find pH of the buffer produced by the mixture of monosodium succinate-Disodium succinate is obtained from H-H equation:

pH = pKa + log ([Na₂Suc] / [NaHSuc])

As you want a pH of 5.28 and pKa is 5.64:

5.28 = 5.64 + log ([Na₂Suc] / [NaHSuc])

-0.36 = log ([Na₂Suc] / [NaHSuc])

0.4365 = ([Na₂Suc] / [NaHSuc]) <em>(1)</em>

<em />

As total concentration of the buffer is 100mM = 0.100M:

0.100M = [Na₂Suc] + [NaHSuc] <em>(2)</em>

Replacing (2) in (1):

0.4365 = (0.100M - [NaHSuc] / [NaHSuc])

0.4365 = (0.100M - [NaHSuc] / [NaHSuc])

0.4365 [NaHSuc] = 0.100M - [NaHSuc]

1.4365 [NaHSuc] = 0.100M

[NaHSuc] = 0.0696M

And:

[Na₂Suc] = 0.0304M

As volume of the buffer is 1L:

[NaHSuc] = 0.0696 moles

[Na₂Suc] = 0.0304 moles

Using molar mass of both substances:

Mass of monosodium succinate:

0.0696moles * (140g / 1mol) =<em> 9.744g of monosodium succinate.</em>

Mass of disodium succinate:

0.0304moles * (162g / 1mol) =<em> 4.925g of disodium succinate.</em>

<em></em>

5 0
2 years ago
Why are the concentrations of [H3O+] and [OH−] equal in pure water?
kotegsom [21]

Answer : The correct option is, (A) [H_3O^+]=[OH^-] because one of each is produced every time an [H^+] transfers from one water molecule to another.

Explanation :

As we know that, when the two water molecule combine to produced hydronium ion and hydroxide ion.

The balanced reaction will be:

HOH+HOH\rightarrow H_3O^++OH^-

Acid : It is a substance that donates hydrogen ion when dissolved in water.

Base : It is a substance that accepts hydrogen ion when dissolved in water.

From this we conclude that, the hydrogen ion are transferred from one water molecule to the another water molecule to form hydronium ion and hydroxide ion. In this reaction, one water molecule will act as a base and another water molecule will act as an acid.

Hence, the correct option is, (A)

3 0
2 years ago
A 0.72-mol sample of PCl5 is put into a 1.00-L vessel and heated. At equilibrium, the vessel contains 0.40 mol of PCl3(g) and 0.
Sonja [21]

Answer:

Equilibrium constant for PCl_5 is 0.5

Equilibrium constant for decomposition of NO_2 is 1.79 \times 10^{-14}

Explanation:

PCl_5 dissociates as follows:

                    PCl_5 \rightleftharpoons PCl_3+Cl_2

initial          0.72 mol     0         0

at eq.     0.72 - 0.40   0.40      0.40

Expression for the equilibrium constant is as follows:

k=\frac{[PCl_3][Cl_2]}{[PCl_5]}

Substitute the values in the above formula to calculate equilibrium constant as follows:

k=\frac{[0.40/1][0.40/1]}{0.32/1} \\=\frac{0.40 \times 0.40}{0.32} \\=0.5

Therefore, equilibrium constant for PCl_5 is 0.5

Now calculate the equilibrium constant for decomposition of  NO_2

It is given that 3.3 \times 10^{-3} \% is decomposed.

NO_2 decomposes as follows:

                                  2NO_2 \rightleftharpoons 2NO + O_2

initial                            1.0 M       0           0

at eq. concentration of  NO_2   is:

[NO_2]_{eq}=1-(0.000066) = 0.999934\ M

[NO]_{eq}=6.6 \times 10^{-5}\ M

[O_2]_{eq}=3.3\times 10^{-5} = 3.3\times 10^{-5}\ M      

Expression for equilibrium constant is as follows:

K=\frac{[NO]^2[O_2]}{[NO_2]^2}

Substitute the values in the above expression

K=\frac{[6.6\times 10^{-5}]^2[3.3 \times 10^{-5}]}{[0.999934]^2} \\=1.79\times 10^{-14}

Equilibrium constant for decomposition of NO_2 is 1.79 \times 10^{-14}

8 0
2 years ago
Other questions:
  • Elements that can be described by the hardness shininess and ductility
    9·1 answer
  • 7. Two teams are competing in a tug-of-war contest. Team A is pulling at 4000N and Team B is pulling at 4900N is the opposite di
    8·2 answers
  • Write equations that show the processes that describe the first, second, and third ionization energies for a gaseous iron atom.
    12·1 answer
  • Abdul swabs one of his sister’s arms with water. He swabs her other arm with rubbing alcohol.
    14·1 answer
  • The half-cell is a chamber in the voltaic cell where one half-cell is the site of the oxidation reaction and the other half-cell
    10·1 answer
  • Which of the samples described below contains the FEWEST atoms? No calculation is needed to answer this question.
    13·1 answer
  • If 0.640 g of beautiful blue crystals of azulene is dissolve in 99 g of benzen, the resulting solutions boils at 80.23 degrees c
    15·1 answer
  • A compound with the molecular formula C10H10O4 produces a 1H NMR spectrum that exhibits only two signals, both singlets. One sig
    15·1 answer
  • 2. The model on the right looks bumpy, but when you break a large salt crystal in two, the edges of the split often look straigh
    6·2 answers
  • How much 2 M HBr is needed to neutralize 380 mL of 0.1 M NH4OH?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!