<span>In order to do this, you have change the alkene into an
alkyne. That is the aim of Br2/CH2Cl2 trailed by NaNH2. The Br2 with form a vic
dihalide (3,4-dibromo octane). Adding of NaNH2 will execute two E2 reactions.
-NH2 will eliminate an H from carbons 3 and 4. This double elimination will make
the alkyne. Then handling the alkyne with H2/Lindlar will form the cis alkene. The
final product will be CIS-3-octene.</span>
To calculate the new pressure, we can use Boyle’s law to relate these two scenarios (Boyle’s law is used because the temperature is assumed to remain constant). Boyle’s law is:
P1V1 = P2V2,
Where “P” is pressure and “V” is volume. The pressure and volume of the first scenario is 215 torr and 51 mL, respectively, and the second scenario has a volume of 18.5 L (18,500 mL) and the unknown pressure - let’s call that “x”. Plugging these into the equation:
(215 torr)(51 mL) =(“x” torr)(18,500 mL)
x = 0.593 torr
The final pressure exerted by the gas would be 0.593 torr.
Hope this helps!
The best and most correct answer among the choices provided by your question is the third choice or letter C.
The best model of a water <span>molecule would be: </span><span>Two small, plastic balls attached to a larger plastic ball by toothpicks</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
0.6137 g of KHP contains 1.086 × 10^21 acidic protons.
Number of moles of KHP = mass of KHP/molar mass of KHP
Molar mass of KHP = 204.22 g/mol
Mass of KHP = 0.6137 g
Number of moles of KHP = 0.6137 g/204.22 g/mol = 0.003 moles of KHP
Now, 1 each molecule of KHP contains 1 acidic proton.
For 0.003 moles of KHP there are; 0.003 × 1 × NA
Where NA is Avogadro's number.
So; 0.003 moles of KHP contains 0.003 × 1 × 6.02 × 10^23
= 1.086 × 10^21 acidic protons.
Learn more: brainly.com/question/16672114
The concentration of the solution is 4.25 M
Explanation
molarity=moles/volume in liters
moles = mass/molar mass
molar mass of HF = 19 + 1 = 20 g/mol
moles is therefore = 17.0 g/ 20 g/mol = 0.85 moles
volume in liters = 2 x10^2ml/1000 = 0.2 liters
therefore molarity = 0.85/0.2 = 4.25 M