The intended sense is that of a reaction that depends on absorbing heat if it is to proceed. The opposite of an endothermic process is an exothermic process, one that releases "gives out" energy in the form of heat
Answer:
Explanation:
It will be better to use solvents that are lighter than water, because their density has an influence on the miscibility . This will give you a better separation during extraction.
Answer:
E. CH₄ < CH₃Cl < CH₃OH < RbCl
Explanation:
The molecule with the stronger intermolecular forces will have the higher boiling point.
The order of strength of intermolecular forces (strongest first) is
- Ion-Ion
- Hydrogen bonding
- Dipole-dipole
- London dispersion
RbCl is a compound of a metal and a nonmetal. It is an ionic compound, so it has the highest boiling point.
CH₃Cl has a C-Cl polar covalent bond. It has dipole-dipole forces, so it has the second lowest boiling point.
CH₃OH has an O-H bond. It has hydrogen bonding, so it has the second highest boiling point.
CH₄ has nonpolar covalent C-H bonds. It has only nonpolar bonds, so the only attractive forces are London dispersion forces. It has the lowest boiling point.
Thus, the order of increasing boiling points is
CH₄ < CH₃Cl < CH₃OH < RbCl
Answer:
It is required answer.
Explanation:
Given that :
1. using balanced chemical equation:
ammonium acetate:
The balanced equation is:
NH₃ + H₂O ===> NH₄OH
when ammonia gas dissolves in water then we get the base in form of ammonium hydroxide.
When NH₄OH reacts with CH₃COOH then we get ammonium acetate and water
NH₄OH + CH₃COOH ===> [CH₃COO]- & NH₄+ & H₂O
So, we can say that,
when we are adding an acid and a base together then we get the product of H₂O and given elements.
2. addition of barium hydroxide to sulfuric acid:
the balanced equation is
H₂SO4+ Ba(OH)₂--> BaSO₄+ 2H₂O
when acid and base reacts together than we get barium sulphate and water
when sulfuric acid and barium hydroxide.
Hence, it is required answer.