answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kvv77 [185]
2 years ago
11

Hitesh wants to learn swimming. He brought swimming costumes and a cap. What kind of material should these be made of and why?

Chemistry
1 answer:
Naddika [18.5K]2 years ago
3 0

Answer:

Spandex(Lycra) and Nylon.

Explanation:

These fabrics are fit for the body as well as nylon dries faster as compared to the other fabrics and Spandex is available in every swimming suits as well as sports suits due to their property of elasticity. These materials also absorb sweat and dry faster.

Nylon and Spandex have a high capacity, improved flexibility including figure-hugging, the mask is more fitted to the body and also can maintain its form during various events. That is going to be useful in swimming.

So, the following are the reason that describes the following answers are correct according to the given scenario

You might be interested in
Explain how a solution can be both dilute and saturated.
svlad2 [7]
Dilution<span> is when you decrease the concentration of a </span>solution<span> by adding a solvent. As a result, if you want to </span>dilute<span> salt water, just add water. ... Add more solute until it quits dissolving. That point at which a solute quits dissolving is the point at which it's </span>saturated<span>.</span>
4 0
2 years ago
Read 2 more answers
You wish to extract an organic compound from an aqueous phase into an organic layer (three to six extractions on a marco scale).
AVprozaik [17]

Answer:

Explanation:

It will be better to use solvents that are lighter than water, because their density has an influence on the miscibility . This will give you a better separation during extraction.

7 0
2 years ago
How many moles of gas Does it take to occupy 520 mL at a pressure of 400 torr and a temperature of 340 k
Ann [662]
Answer would be B. I provided work on an image attached. Message me if u have any other questions on how to do it

6 0
2 years ago
1) Aluminum sulphate can be made by the following reaction: 2AlCl3(aq) + 3H2SO4(aq) Al2(SO4)3(aq) + 6 HCl(aq) It is quite solubl
kolezko [41]

Answer:

88.9%

Explanation:

Step 1:

The balanced equation for the reaction. This is given below:

2AlCl3(aq) + 3H2SO4(aq) —> Al2(SO4)3(aq) + 6HCl(aq)

Step 2:

Determination of the masses of AlCl3 and H2SO4 that reacted and the mass of Al2(SO4)3 produced from the balanced equation.

Molar mass of AlCl3 = 27 + (35.5x3) = 133.5g/mol

Mass of AlCl3 from the balanced equation = 2 x 133.5 = 267g

Molar mass of H2SO4 = (2x1) + 32 + (16x4) = 98g/mol

Mass of H2SO4 from the balanced equation = 3 x 98 = 294g

Molar mass of Al2(SO4)3 = (27x2) + 3[32 + (16x4)]

= 54 + 3[32 + 64]

= 54 + 3[96] = 342g/mol

Mass of Al2(SO4)3 from the balanced equation = 1 x 342 = 342g

Summary:

From the balanced equation above,

267g of AlCl3 reacted with 294g of H2SO4 to produce 342g of Al2(SO4)3.

Step 3:

Determination of the limiting reactant. This is illustrated below:

From the balanced equation above,

267g of AlCl3 reacted with 294g of H2SO4.

Therefore, 25g of AlCl3 will react with = (25 x 294)/267 = 27.53g of H2SO4.

From the calculations made above, we see that only 27.53g out 30g of H2SO4 given were needed to react completely with 25g of AlCl3.

Therefore, AlCl3 is the limiting reactant and H2SO4 is the excess.

Step 4:

Determination of the theoretical yield of Al2(SO4)3.

In this case we shall be using the limiting reactant because it will produce the maximum yield of Al2(SO4)3 since all of it is used up in the reaction.

The limiting reactant is AlCl3 and the theoretical yield of Al2(SO4)3 can be obtained as follow:

From the balanced equation above,

267g of AlCl3 reacted to produce 342g of Al2(SO4)3.

Therefore, 25g of AlCl3 will react to produce = (25 x 342) /267 = 32.02g of Al2(SO4)3.

Therefore, the theoretical yield of Al2(SO4)3 is 32.02g

Step 5:

Determination of the percentage yield of Al2(SO4)3.

This can be obtained as follow:

Actual yield of Al2(SO4)3 = 28.46g

Theoretical yield of Al2(SO4)3 = 32.02g

Percentage yield of Al2(SO4)3 =..?

Percentage yield = Actual yield /Theoretical yield x 100

Percentage yield = 28.46/32.02 x 100

Percentage yield = 88.9%

Therefore, the percentage yield of Al2(SO4)3 is 88.9%

3 0
2 years ago
Which has not been suggested as a reasonably practical way to store large amounts of hydrogen in relatively small spaces for its
Yakvenalex [24]

Answer: A. Liquefy hydrogen under pressure and store it much as we do with liquefied natural gas today.

Explanation:

Current Hydrogen storage methods fall into one of two technologies;

  1. <em>physical storage</em> where compressed hydrogen gas is stored under pressure or as a liquid; and
  2. <em>chemical storage</em>, where the hydrogen is bonded with another material to form a hydride and released through a chemical reaction.

Physical storage solutions are commonly used technologies but are problematic when looking at using hydrogen to fuel vehicles. Compressed hydrogen gas needs to be stored under high pressure and  requires large and heavy tanks. Also, liquid hydrogen boils at -253°C (-423°F) so it needs to be stored cryogenically with heavy insulation and actually contains less hydrogen compared with the same volume of gasoline.  

Chemical storage methods allow hydrogen to be stored at much lower pressures and offer high storage performance due to the strong binding of hydrogen and the high storage densities. They also occupy relatively smaller spaces than either compressed hydrogen gas or liquified hydrogen. A large number of chemical storage systems are under investigation, which involve hydrolysis reactions, hydrogenation/dehydrogenation reactions, ammonia borane and other boron hydrides, ammonia, and alane etc.

Other practical storage methods being researched that focuses on storing hydrogen as a lightweight, compact energy carrier for mobile applications include;

  • Metal hydrides  e.g. LiH
  • Nanostructured metal hydrides
  • Non-metal hydrides
  • Carbohydrates
  • Synthesized hydrocarbons
  • Aluminum
  • Liquid organic hydrogen carriers (LOHC)
  • Encapsulation , e.t.c.
5 0
2 years ago
Other questions:
  • If a runner completes a 10 kilometer race in 32.50 minutes, what is the 10.0 km pace in miles per hour? (1.609 km = 1 mile appro
    8·1 answer
  • In which of these situations would light slow down?
    14·2 answers
  • PLEASE HELP!!! Which of John Dalton's contributions are present in the modern atomic model and which were eventually disproven a
    12·1 answer
  • 1.00-degree increase on the Celsius scale is equivalent to a 1.80-degree increase on the Fahrenheit scale. The temperature of a
    13·1 answer
  • How many iodide ions are present in 65.5ml of .210 m AlI3 solution
    7·1 answer
  • A scientist performs an experiment in which they create an artificial cell with a selectively permeable membrane through which o
    13·1 answer
  • A car uses 12.5 L of gasoline to travel a distance of 275 km. Convert this into units of miles per gallon (mi/gal).
    14·1 answer
  • 1. For HF and HBr, the partial positive charge on H atom is 0.29 and 0.09, respectively. Use electronegativities (EN) to explain
    15·1 answer
  • Trimix is a general name for a type of gas blend used by technical divers and contains nitrogen, oxygen and helium. In one Trimi
    6·1 answer
  • A voltaic cell has a zinc anode and a copper cathode. They are connected by a wire but no salt bridge. What can you predict will
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!