Assume that the amount needed from the 5% acid is x and that the amount needed from the 6.5% acid is y.
We are given that:
The volume of the final solution is 200 ml
This means that:
x + y = 200
This can be rewritten as:
x = 200 - y .......> equation I
We are also given that:
The concentration of the final solution is 6%
This means that:
5%x + 6.5%y = 6% (x+y)
This can be rewritten as:
0.05 x + 0.065 y = 0.06 (x+y) ............> equation II
Substitute with equation I in equation II and solve for y as follows:
0.05 x + 0.065 y = 0.06 (x+y)
0.05 (200-y) + 0.065 y = 0.06 (200-y+y)
10 - 0.05 y + 0.065 y = 12
0.015y = 12-10 = 2
y = 2/0.015
y = 133.3334 ml
Substitute with the y in equation I to get the x as follows:
x = 200 - y
x = 200 - 133.3334
x = 66.6667 ml
Based on the above calculations:
The amount required from the 5% acid = x = 66.6667 ml
The amount required from the 6.5% acid = y = 133.3334 ml
Hope this helps :)
Answer:
The pH of 0.1 M BH⁺ClO₄⁻ solution is <u>5.44</u>
Explanation:
Given: The base dissociation constant:
= 1 × 10⁻⁴, Concentration of salt: BH⁺ClO₄⁻ = 0.1 M
Also, water dissociation constant:
= 1 × 10⁻¹⁴
<em><u>The acid dissociation constant </u></em>(
)<em><u> for the weak acid (BH⁺) can be calculated by the equation:</u></em>

<em><u>Now, the acid dissociation reaction for the weak acid (BH⁺) and the initial concentration and concentration at equilibrium is given as:</u></em>
Reaction involved: BH⁺ + H₂O ⇌ B + H₃O+
Initial: 0.1 M x x
Change: -x +x +x
Equilibrium: 0.1 - x x x
<u>The acid dissociation constant: </u>![K_{a} = \frac{\left [B \right ] \left [H_{3}O^{+}\right ]}{\left [BH^{+} \right ]} = \frac{(x)(x)}{(0.1 - x)} = \frac{x^{2}}{0.1 - x}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5Cleft%20%5BB%20%5Cright%20%5D%20%5Cleft%20%5BH_%7B3%7DO%5E%7B%2B%7D%5Cright%20%5D%7D%7B%5Cleft%20%5BBH%5E%7B%2B%7D%20%5Cright%20%5D%7D%20%3D%20%5Cfrac%7B%28x%29%28x%29%7D%7B%280.1%20-%20x%29%7D%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%7D%7B0.1%20-%20x%7D)





<u>Therefore, the concentration of hydrogen ion: x = 3.6 × 10⁻⁶ M</u>
Now, pH = - ㏒ [H⁺] = - ㏒ (3.6 × 10⁻⁶ M) = 5.44
<u>Therefore, the pH of 0.1 M BH⁺ClO₄⁻ solution is 5.44</u>
Explanation:
The given data is as follows.
Moles of propylene = 100 moles,
= 300 K
= 800 K,
,
of propylene = 100 J/mol
Now, we assume the following assumptions:
Since, it is a compression process therefore, work will be done on the system. And, work done will be equal to the heat energy liberating without any friction.
W = 

= 
= 5 MJ
Thus, we can conclude that a minimum of 5 MJ work is required without any friction.
The oxidation number of iodine is 5 in Mg(IO3)2 which can be calculated as
Mg(IO3)2
MgI2O6
As we know that
Mg has +2
O has -2
So,
(+2) + 2I + 6 (-2)=0
2 + 2I - 12 =0
10+ 2I =0
10 = 2I
I =5