Answer is: A. 1.81 mol.
Balanced chemical reaction: FeCl₂ + 2KOH → Fe(OH)₂ + 2KCl.
n(FeCl₂) = 4.15 mol; amount of iron(II) chloride.
n(KOH) = 3.62 mol; amount of potassium hydroxide, limiting reactant.
From chemical reaction: n(KOH) : n(Fe(OH)₂) = 2 : 1.
n(Fe(OH)₂) = n(KOH) ÷ 2.
n(Fe(OH)₂) = 3.62 mol ÷ 2.
n(Fe(OH)₂) = 1.81 mol; amount of iron(II) hydroxide.
Answer:
The actual Van't Hoff factor for AlCl3 is 3.20
Explanation:
Step 1: Data given
Molarity of AlCl3 = 0.050 M
osmotic pressure = 3.85 atm
Temperature = 20 °C
Step 2: Calculate the Van't Hoff factor
AlCl3(aq) → Al^3+(aq) + 3Cl^-(aq)
The theoretical value is 4 ( because 1 Al^3+ ion + 3 Cl- ions) BUT due to the interionic atractions the actual value will be less
Osmotic pressure depends on the molar concentration of the solute but not on its identity., and is calculated by:
π = i.M.R.T
⇒ with π = the osmotic pressure = 3.85 atm
⇒ with i = the van't Hoff factor
⇒ with M = the molar concentration of the solution = 0.050 M
⇒ with R = the gas constant = 0.08206 L*atm/K*mol
⇒ with T = the temperature = 20 °C = 293.15 Kelvin
i = π /(M*R*T
)
i = (3.85) / (0.050*0.08206*293.15)
i = 3.20
The actual Van't Hoff factor is 3.20
Answer:
x means unknown it is an unknown value.
For example if you have 2 x you have 2 u know values.
Explanation:
If you want us to explain it further please provide a picture.
I would say that Candace's answer is d. wide-ranging. she didn't get the exact / precise (they mean the same thing) answer.
Answer:
1.216mol
Explanation:
The molar mass of C₄H₁₀ is (12 x4)+ (1x 10) = 48 + 10 = 58g
1 grams C4H10 is equal to 0.017205129881525 mole.
70.7 grams = 70.7 x 0.017205129881525 = 1.216mol