This is the process of sieving, in which the heavier particles settle at the bottom and the lighter ones are retained at the top.
Basis: 100 mL solution
From the given density, we calculate for the mass of the solution.
density = mass / volume
mass = density x volume
mass = (1.83 g/mL) x (100 mL) = 183 grams
Then, we calculate for the mass H2SO4 given the percentage.
mass of H2SO4 = (183 grams) x (0.981) = 179.523 grams
Calculate for the number of moles of H2SO4,
moles H2SO4 = (179.523 grams) / (98.079 g/mol)
moles H2SO4 = 1.83 moles
Molarity:
M = moles H2SO4 / volume solution (in L)
= 1.83 moles / (0.1L ) = 18.3 M
Molality:
m = moles of H2SO4 / kg of solvent
= 1.83 moles / (183 g)(1-0.983)(1 kg/ 1000 g) = 588.24 m
There are 6.022*10^23 molecules in 1 mole of carbon
So how many will moles will be 7.87*20^7?
Let the required number of moles be ‘x’.
1 mole ———6.022*10^23
x moles———7.87*10^7
(Cross multiplication)
x=7.87*10^7/6.022*10^23
Therefore x=1.3*10^-16
Answer:
Part A
K = (K₂)²
K = (K₃)⁻²
Part B
K = √(Ka/Kb)
Explanation:
Part A
The parent reaction is
2Al(s) + 3Br₂(l) ⇌ 2AlBr₃(s)
The equilibrium constant is given as
K = [AlBr₃]²/[Al]²[Br₂]³
2) Al(s) + (3/2) Br₂(l) ⇌ AlBr₃(s)
K₂ = [AlBr₃]/[Al][Br₂]¹•⁵
It is evident that
K = (K₂)²
3) AlBr₃(s) ⇌ Al(s) + 3/2 Br₂(l)
K₃ = [Al][Br₂]¹•⁵/[AlBr₃]
K = (K₃)⁻²
Part B
Parent reaction
S(s) + O₂(g) ⇌ SO₂(g)
K = [SO₂]/[S][O₂]
a) 2S(s) + 3O₂(g) ⇌ 2SO₃(g)
Ka = [SO₃]²/[S]²[O₂]³
[SO₃]² = Ka × [S]²[O₂]³
b) 2SO₂(g) + O₂(g) ⇌ 2 SO₃(g)
Kb = [SO₃]²/[SO₂]²[O₂]
[SO₃]² = Kb × [SO₂]²[O₂]
[SO₃]² = [SO₃]²
Hence,
Ka × [S]²[O₂]³ = Kb × [SO₂]²[O₂]
(Ka/Kb) = [SO₂]²[O₂]/[S]²[O₂]³
(Ka/Kb) = [SO₂]²/[S]²[O₂]²
(Ka/Kb) = {[SO₂]/[S][O₂]}²
Recall
K = [SO₂]/[S][O₂]
Hence,
(Ka/Kb) = K²
K = √(Ka/Kb)
Hope this Helps!!!
The balanced reaction would be:
2CO + O2 = 2CO2
We assume that the gases are ideal gas so that we use the relation that 1 mol of an ideal gas is equal to 22.4 L of the gas at STP. From that relation, we get the number of moles and we can convert it to other units. We do as follows:
1.0 L CO ( 1 mol / 22.4 L ) ( 2 mol CO2 / 2mol CO ) = 0.045 mol CO2 produced
0.045 mol CO2 ( 22.4 L / 1 mol ) = 1 L of CO2
0.045 mol CO2 ( 44.01 g / 1 mol ) = 1.98 g of CO2