Pi rounded to a whole number would equal three. Circumference equals 2pi*r. The radius in this case is half of the diameter, so 4.5 cm. 2 times pi, or three equals 6 times 4.5 is 27
Given the table below comparing the marginal benefit Lucinda gets from
Kewpie dolls and Beanie Babies.
![\begin{tabular} {|p {2cm}|p {2cm}|p {2cm}|p {2cm}|} \multicolumn {4} {|c|} {Lucinda's Kewpie Doll and Beanie Baby Marginal Benefits}\\[1ex] \multicolumn {2} {|c|} {Kewpie Dolls}&\multicolumn {2} {|c|} {Beanie Babies}\\[1ex] 1&\$15.00&1&\$12.00\\ 2&\$12.00&2&\$10.00\\ 3&\$9.00&3&\$8.00\\ 4&\$6.00&4&\$6.00\\ 5&\$3.00&5&\$4.00\\ 6&\$0.00&6&\$2.00\\ \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cp%20%7B2cm%7D%7Cp%20%7B2cm%7D%7Cp%20%7B2cm%7D%7Cp%20%7B2cm%7D%7C%7D%0A%5Cmulticolumn%20%7B4%7D%20%7B%7Cc%7C%7D%20%7BLucinda%27s%20Kewpie%20Doll%20and%20Beanie%20Baby%20Marginal%20Benefits%7D%5C%5C%5B1ex%5D%0A%5Cmulticolumn%20%7B2%7D%20%7B%7Cc%7C%7D%20%7BKewpie%20Dolls%7D%26%5Cmulticolumn%20%7B2%7D%20%7B%7Cc%7C%7D%20%7BBeanie%20Babies%7D%5C%5C%5B1ex%5D%0A1%26%5C%2415.00%261%26%5C%2412.00%5C%5C%0A2%26%5C%2412.00%262%26%5C%2410.00%5C%5C%0A3%26%5C%249.00%263%26%5C%248.00%5C%5C%0A4%26%5C%246.00%264%26%5C%246.00%5C%5C%0A5%26%5C%243.00%265%26%5C%244.00%5C%5C%0A6%26%5C%240.00%266%26%5C%242.00%5C%5C%0A%5Cend%7Btabular%7D)
<span>If
lucinda has only $18 to spend and the price of kewpie dolls and the
price of beanie babies are both $6,
Lucinda will buy the combination for which marginal benefit is the same.
Therefore, Lucinda will buy </span><span>2 kewpie dolls and 1 beanie baby,</span><span>
if she were rational.</span>
Answer:
the science fiction books and five mystery books in each package. This is because 6 is the highest common factor of both 48 and 30, and 6 x 8 = 48 and 6 x 5 = 30.
Malcolm's remaining distance is approximately
1370 - 470 - 430 = 470
This corresponds to selection ...
D) 470 miles
Answer:
![4x^5\sqrt[3]{3x}](https://tex.z-dn.net/?f=%204x%5E5%5Csqrt%5B3%5D%7B3x%7D%20)
Step-by-step explanation:
I'm not sure I understand the problem, but I think it's this:
![\sqrt[3]{16x^7} \times \sqrt[3]{12x^9} =](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B16x%5E7%7D%20%5Ctimes%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20)
![= \sqrt[3]{16 \times 12 \times x^{16}}](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B16%20%5Ctimes%2012%20%5Ctimes%20x%5E%7B16%7D%7D)
![= \sqrt[3]{192 \times x^{15} \times x}](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B192%20%5Ctimes%20x%5E%7B15%7D%20%5Ctimes%20x%7D)
![= \sqrt[3]{64 \times 3 \times (x^5)^3 \times x}](https://tex.z-dn.net/?f=%20%3D%20%5Csqrt%5B3%5D%7B64%20%5Ctimes%203%20%5Ctimes%20%28x%5E5%29%5E3%20%5Ctimes%20x%7D%20)
![= \sqrt[3]{4^3 \times 3 \times (x^5)^3 \times x}](https://tex.z-dn.net/?f=%20%3D%20%5Csqrt%5B3%5D%7B4%5E3%20%5Ctimes%203%20%5Ctimes%20%28x%5E5%29%5E3%20%5Ctimes%20x%7D%20)
![= 4x^5\sqrt[3]{3x}](https://tex.z-dn.net/?f=%20%3D%204x%5E5%5Csqrt%5B3%5D%7B3x%7D%20)