answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina CMI [18]
3 years ago
9

If you secure a refrigerator magnet about 2mmfrom the metallic surface of a refrigerator door and then move the magnet sideways,

you can feel a resistive force, indicating the presence of eddy currents in the surface.
A)Estimate the magnetic field strength Bof the magnet to be 5 mTand assume the magnet is rectangular with dimensions 4 cmwide by 2 cmhigh, so its area A is 8 cm2. Now estimate the magnetic flux ΦB into the refrigerator door behind the magnet.
Express your answer with the appropriate units.

B)If you move the magnet sideways at a speed of 2 cm/s, what is a corresponding estimate of the time rate at which the magnetic flux through an area A fixed on the refrigerator is changing as the magnet passes over? Use this estimate to estimate the emf induced under the rectangle on the door's surface.
Express your answer with the appropriate units.
Physics
1 answer:
asambeis [7]3 years ago
7 0

Answer:

(A) 4* 6 ^ ⁻6 T m² (B) 2 * 10 ^ ⁻6 v

Explanation:

Solution

Given that:

A refrigerator magnet about = 2 mm

The estimated magnetic field strength of the magnet is = 5 m T

The Area = 8 cm²

Now,

(A) The magnetic flux ΦB = BA

Thus,

ΦB  = (5 * 10^⁻ 3) ( 4 * 10 ^⁻2) * ( 2 * 10^ ⁻2) Tm²

So,

ΦB =  4* 6 ^ ⁻6 T m²

(B)By applying Faraday's Law we have the following formula given below:

Ε = Bℓυ

Here,

ℓ = 2 cm the same as 2 * 10 ^⁻2 m

B = 5 m T = 5 * 10 ^ ⁻3 T

υ = 2 cm/s  = 2 * 10 ^ ⁻2 m/s

Thus,

Ε = (5 * 10 ^ ⁻3 T) *  (2 * 10 ^ ⁻2) (2 * 10 ^ ⁻2) v

E =2 * 10 ^ ⁻6 v

You might be interested in
if a net horizontal force of 175 N is applied to a bike whos mass is 43 kg what acceleration is produced
Anna [14]

Explanation:

f=175N

m=43kg

a=?

know

f=ma

a=f/m

a=175/43

a=4.06m/s

3 0
2 years ago
Describe the energy transformations that occur from the time a skydiver jumps out of a plane until landing on the ground.
Kisachek [45]
When the Skydiver jump out a plane, his Potential Energy is being converted or transform into Kinetic energy due to gravity. Hope this helps
6 0
2 years ago
Read 2 more answers
A beam of electrons moves at right angles to a magnetic field of 4.5 × 10-2 tesla. If the electrons have a velocity of 6.5 × 106
defon

Answer:

4.7\cdot 10^{-14}N

Explanation:

For a charge moving perpendicularly to a magnetic field, the force experienced by the charge is given by:

F=qvB

where

q is the magnitude of the charge

v is the velocity

B is the magnetic field strength

In this problem,

q=1.6\cdot 10^{-19} C

v=6.5\cdot 10^6 m/s

B=4.5\cdot 10^{-2} T

So the force experienced by the electrons is

F=(1.6\cdot 10^{-19}C)(6.5\cdot 10^6 m/s)(4.5\cdot 10^{-2} T)=4.7\cdot 10^{-14}N

3 0
2 years ago
An object is moving in the plane according to these parametric equations:
aniked [119]
A. The horizontal velocity is 
vx = dx/dt = π - 4πsin (4πt + π/2)
vx = π - 4π sin (0 + π/2)
vx = π - 4π (1)
vx = -3π

b. vy = 4π cos (4πt + π/2)
vy = 0

c. m = sin(4πt + π/2) / [<span>πt + cos(4πt + π/2)]

d. m = </span>sin(4π/6 + π/2) / [π/6 + cos(4π/6 + π/2)]

e. t = -1.0

f. t = -0.35

g. Solve for t 
vx = π - 4πsin (4πt + π/2) = 0
Then substitute back to solve for vxmax

h. Solve for t
vy = 4π cos (4πt + π/2) = 0
The substitute back to solve for vymax

i. s(t) = [<span>x(t)^2 + y</span>(t)^2]^(1/2)

h. s'(t) = d [x(t)^2 + y(t)^2]^(1/2) / dt

k and l. Solve for the values of t
d [x(t)^2 + y(t)^2]^(1/2) / dt = 0
And substitute to determine the maximum and minimum speeds.
5 0
2 years ago
Read 2 more answers
Find an expression for the torsional constant k in terms of the moment of inertia I of the disk and the angular frequency ω of s
sasho [114]

Answer:

Explanation:

The general equation for the disk with moment of inertia I when given small angular displacement  \theta is given by

I\frac{\mathrm{d^2} \theta }{\mathrm{d} t^2}=-k\theta

\frac{\mathrm{d^2} \theta }{\mathrm{d} t^2}+\frac{k\theta }{I}=0

Replacing

\frac{k\theta }{I}=\omega ^2

where \omega is the angular frequency of oscillation

General solution for this Equation is given by

\theta =\theta _{max}\sin \left ( \omega t+\phi \right )

where \theta _{max}=maximum\ angular\ displacement

\phi =Phase\ difference

Thus K can be written as

k=I\omega ^2

5 0
2 years ago
Other questions:
  • Why did the acorn fall to earth instead of rising up to the moon?
    8·2 answers
  • You are riding on a roller coaster that starts from rest at a height of 25.0 m and moves along a frictionless track. however, af
    8·2 answers
  • Recent findings in astrophysics suggest that the observable universe can be modeled as a sphere of radius R = 13.7 × 109 light-y
    13·1 answer
  • In a physics laboratory experiment, a coil with 200 turns enclosing an area of 12cm2 is rotated in 0.040 s from a position where
    7·1 answer
  • Anna Litical and Noah Formula are experimenting with the effect of mass and net force upon the acceleration of a lab cart. They
    11·1 answer
  • A stone with a mass of 1.0 kg is tied to the end of a light string which keeps it moving in a circle with a constant speed of 4.
    5·1 answer
  • Of the following systems, which contains the most heat?
    10·1 answer
  • As a freely falling object picks up downward speed, what happens to the power supplied by the gravitational force?
    15·1 answer
  • .Find the uncertainty in a calculated electrical potential difference from the measurements of current and resistance. Electric
    8·1 answer
  • Using all three of Newton's laws of motion, carefully describe the motion of a baseball beginning when the ball is resting in th
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!