Find Displacement and Distance
displacement ...
north is 700+400+100 =1200m n
south=1200m
1200-1200=0
east is 300+300=600m
west is 600m
600-600=0
back at dtart. displ zero
distance is 700+ 300m + 400 m + 600m + 1200m + 300m + 100m = 3600m
Answer: 35*10^3 N/m
Explanation: In order to explain this problem we know that the potential energy for spring is given by:
Up=1/2*k*x^2 where k is the spring constant and x is the streching or compresion position from the equilibrium point for the spring.
We also know that with additional streching of 2 cm of teh spring, the potential energy is 18J. Then it applied another additional streching of 2 cm and the energy is 25J.
Then the difference of energy for both cases is 7 J so:
ΔUp= 1/2*k* (0.02)^2 then
k=2*7/(0.02)^2=35000 N/m
First, we have to calculate the normal forces on different surfaces.The normal force on the 4.00 kg, N1 = (4)(9.8) = 39.2 N. The normal force on the 10.0 kg, N2 = (14)(9.8) = 137.2 N. Looking at the 10.0 kg block, the static forces that counteract the pulling force equals the sum of the friction from the two surfaces. Fc = N1 * 0.80 + N2 * 0.80 = 141.12 N. Since the counter force is less than the pulling force, the blocks start to move and hence, kinetic frictions are considered.
Therefore, f1 = uk * N1 = (0.60)(39.2) = 23.52 N.
Flow rate = 220*0.355 l/m = 78.1 l/min = 1.3 l/s = 0.0013 m^3/s
Point 2:
A2= 8 cm^2 = 0.0008 m^2
V2 = Flow rate/A2 = 0.0013/0.0008 = 1.625 m/s
P1 = 152 kPa = 152000 Pa
Point 1:
A1 = 2 cm^2 = 0.0002 m^2
V1 = Flow rate/A1 = 0.0013/0.0002 = 6.5 m/s
P1 = ?
Height = 1.35 m
Applying Bernoulli principle;
P2+1/2*V2^2/density = P1+1/2*V1^2/density +density*gravitational acceleration*height
=>152000+0.5*1.625^2*1000=P1+0.5*6.5^2*1000+1000*9.81*1.35
=> 153320.31 = P1 + 34368.5
=> P1 = 1533210.31-34368.5 = 118951.81 Pa = 118.95 kPa
Power may be defined as the rate of doing work or the rate of using energy. <span> It is the amount of energy consumed per unit time. It is calculated as follows:
P = E / t
P = 480 / 5
P = 96 W <-----OPTION 3
Hope this answers the question. Have a nice day.</span>