The vector product of
and the magnitude of
is 
Further explanation:
Given:
Vector a is 
Vector b is 
Explanation:
The cross product of a \times b can be obtained as follows,

The vector can be expressed as follows,

The magnitude of
can be obtained as follows,
43404
The vector product of
and the magnitude of
is 
Learn more:
- Learn more about inverse of the functionhttps://brainly.com/question/1632445.
- Learn more about equation of circle brainly.com/question/1506955.
- Learn more about range and domain of the function brainly.com/question/3412497
Answer details:
Grade: High School
Subject: Mathematics
Chapter: Vectors
Keywords: two vectors, vector product, expressed in unit vectors, magnitude, vector a, vector b, a=4.00i^+7.00j^, b=5.00i^-2.00j^, unit vectors, vector space.
Answer:
111
Step-by-step explanation:
It is given that the student to faculty ratio at a small college is 17:3.
Let number of students and faculty members are 17x and 3x respectively.
It is given that total number of students and faculty is 740.
Divide both sides by 20.
Number of student
Number of faculty members
Therefore, there are 111 faculty members at the college.
Answer:
=Vlookup'B13' A11' 7'false
Press enter.
Step-by-step explanation:
Vlookup is a technique in excel which enables users to search for criterion values. It is vertical lookup function in excel which return a value from a different column. The formula for Vlookup function is:
=Vlookup'select cell you want to look up in' select cell you want to lookup from' select column index number' true/false.
where true is approximate match and false is exact match.
Answer:
k = 11.
Step-by-step explanation:
y = x^2 - 5x + k
dy/dx = 2x - 5 = the slope of the tangent to the curve
The slope of the normal = -1/(2x - 5)
The line 3y + x =25 is normal to the curve so finding its slope:
3y = 25 - x
y = -1/3 x + 25/3 <------- Slope is -1/3
So at the point of intersection with the curve, if the line is normal to the curve:
-1/3 = -1 / (2x - 5)
2x - 5 = 3 giving x = 4.
Substituting for x in y = x^2 - 5x + k:
When x = 4, y = (4)^2 - 5*4 + k
y = 16 - 20 + k
so y = k - 4.
From the equation y = -1/3 x + 25/3, at x = 4
y = (-1/3)*4 + 25/3 = 21/3 = 7.
So y = k - 4 = 7
k = 7 + 4 = 11.