Answer:
The <em>z</em>-score for the group "25 to 34" is 0.37 and the <em>z</em>-score for the group "45 to 54" is 0.25.
Step-by-step explanation:
The data provided is as follows:
25 to 34 45 to 54
1329 2268
1906 1965
2426 1149
1826 1591
1239 1682
1514 1851
1937 1367
1454 2158
Compute the mean and standard deviation for the group "25 to 34" as follows:
![\bar x=\frac{1}{n}\sum x=\frac{1}{8}\times [1329+1906+...+1454]=\frac{13631}{8}=1703.875\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{8-1}\times 1086710.875}=394.01](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum%20x%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20%5B1329%2B1906%2B...%2B1454%5D%3D%5Cfrac%7B13631%7D%7B8%7D%3D1703.875%5C%5C%5C%5Cs%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn-1%7D%5Csum%20%28x-%5Cbar%20x%29%5E%7B2%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B8-1%7D%5Ctimes%201086710.875%7D%3D394.01)
Compute the <em>z</em>-score for the group "25 to 34" as follows:

Compute the mean and standard deviation for the group "45 to 54" as follows:
![\bar x=\frac{1}{n}\sum x=\frac{1}{8}\times [2268+1965+...+2158]=\frac{14031}{8}=1753.875\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{8-1}\times 1028888.875}=383.39](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum%20x%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20%5B2268%2B1965%2B...%2B2158%5D%3D%5Cfrac%7B14031%7D%7B8%7D%3D1753.875%5C%5C%5C%5Cs%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn-1%7D%5Csum%20%28x-%5Cbar%20x%29%5E%7B2%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B8-1%7D%5Ctimes%201028888.875%7D%3D383.39)
Compute the <em>z</em>-score for the group "45 to 54" as follows:

Thus, the <em>z</em>-score for the group "25 to 34" is 0.37 and the <em>z</em>-score for the group "45 to 54" is 0.25.
(856/12) - (907/16) = 14.645833
So the difference is, 14.645833.
2.5E-2 or 2.5x10^-2
Hope this can help you!
Answer:
a) 
b) Wind capacity will pass 600 gigawatts during the year 2018
Step-by-step explanation:
The world wind energy generating capacity can be modeled by the following function

In which W(t) is the wind energy generating capacity in t years after 2014, W(0) is the capacity in 2014 and r is the growth rate, as a decimal.
371 gigawatts by the end of 2014 and has been increasing at a continuous rate of approximately 16.8%.
This means that

(a) Give a formula for W , in gigawatts, as a function of time, t , in years since the end of 2014 . W= gigawatts



(b) When is wind capacity predicted to pass 600 gigawatts? Wind capacity will pass 600 gigawatts during the year?
This is t years after the end of 2014, in which t found when W(t) = 600. So




We have that:

So we apply log to both sides of the equality





It will happen 3.1 years after the end of 2014, so during the year of 2018.