(u) = 20 m/s
(v) = 0 m/s
<span> (t) = 4 s
</span>
<span>0 = 20 + a(4)
</span><span>4 x a = -20
</span>
so, the answer is <span>-5 m/s^2. or -5 meter per second</span>
Answer:
label A= radio waves, label C= infrared, Label D= visible Light, Label G= gamma rays.
Explanation:
hope it helped??
can i have a thanks, a 5 star, and a brainliest please
can we be friends
To solve the problem, we enumerate all the given first. Then the required and lastly the solution.
Given:
V1= 1.56x10^3 L = 1560 L P2 = 44.1 kPa
P1 = 98.9 kPa
Required: V2
Solution:
Assuming the gas is ideal. Ideal gas follows Boyle's Law which states that at a given temperature the product of pressure and volume of a gas is constant. In equation,
PV = k
Applying to the problem, we have
P1*V1 = P2*V2
(98.9 kPa)*(1560 L) = (44.1 kPa)*V2
V2 = 3498.5 L
<em>ANSWER: V2 = 3498.5 L</em>
Answer: 
Explanation:
In the image attached with this answer are shown the given options from which only one is correct.
The correct expression is:

Because, if we derive velocity
with respect to time
we will have acceleration
, hence:

Where
is the mass with units of kilograms (
) and
with units of meter per square seconds
, having as a result 
The other expressions are incorrect, let’s prove it:
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
and
is a constant
because
is a constant in this derivation respect to
This result has units of
and
is a constant
Answer:
- The total distance traveled is 28 inches.
- The displacement is 2 inches to the east.
Explanation:
Lets put a frame of reference in the problem. Starting the frame of reference at the point with the 0-inch mark, and making the unit vector
pointing in the west direction, the ant start at position

Then, moves to

so, the distance traveled here is



after this, the ant travels to

so, the distance traveled here is



The total distance traveled will be:

The displacement is the final position vector minus the initial position vector:



This is 2 inches to the east.