answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aalyn [17]
2 years ago
5

a partially inflated weather balloon has a volume of 1.56 * 10^3 L and a pressure of 98.9 lPa. What is the volume of the balloon

when the ballon is released to a height where the pressure is 44.1 kPa
Physics
1 answer:
e-lub [12.9K]2 years ago
7 0
To solve the problem, we enumerate all the given first. Then the required and lastly the solution.

Given:

V1= 1.56x10^3 L = 1560 L                P2 = 44.1 kPa
P1 = 98.9 kPa

Required:  V2

Solution:

Assuming the gas is ideal. Ideal gas follows Boyle's Law which states that at a given temperature the product of pressure and volume of a gas is constant. In equation,

PV = k

Applying to the problem, we have
 
P1*V1 = P2*V2
(98.9 kPa)*(1560 L) = (44.1 kPa)*V2
V2 = 3498.5 L

<em>ANSWER: V2 = 3498.5 L</em>
You might be interested in
A mercury thermometer has a glass bulb of interior volume 0.100 cm3 at 10°c. the glass capillary 10) tube above the bulb has an
Nadya [2.5K]
Initial volume of mercury is
V = 0.1 cm³

The temperature rise is 35 - 5 = 30 ⁰C = 30 ⁰K.

Because the coefficient of volume expansion is 1.8x10⁻⁴ 1/K, the change in volume of the mercury is 
ΔV = (1.8x10⁻⁴ 1/K)*(30 ⁰K)(0.1 cm³) = 5.4x10⁻⁴ cm³

The cross sectional area of the tube is
A = 0.012 mm² = (0.012x10⁻² cm²).
Therefore the rise of mercury in the tube is
h = ΔV/A
   = (5.4x10⁻⁴ cm³)/(0.012x10⁻² cm²)
   = 4.5 cm

Answer: 4.5 cm
7 0
2 years ago
Read 2 more answers
A projectile is launched at an angle of 60° from the horizontal and at a velocity of
gayaneshka [121]

Answer:

60*12.0= 720 = v/60 * 12.0 squared which is 1,728

Explanation:

Horizontal velocity component: Vx = V * cos(α)

5 0
2 years ago
a rod of some material 0.20 m long elongates 0.20 mm on heating from 21 to 120°c. determine the value of the linear coefficient
Rufina [12.5K]

Answer:

The value of the linear coefficient of thermal expansion is : α=1.01 *10⁻⁵ (ºC)⁻¹

Explanation:

Li = 0.2m

ΔL = 0.2 mm = 0.0002m

T1 = 21ºC

T2 = 120ºC

ΔT =99ºC

α =ΔL/(Li*ΔT)

α =0.0002m /(0.2m * 99ºC)

α = 1.01 *10⁻⁵   (ºC)⁻¹

4 0
2 years ago
A certain alarm clock ticks four times each second, with each tick representing half a period. The balance wheel consists of a t
Semenov [28]

Answer:

a. I=2.77x10^{-8} kg*m^2

b. K=4.37 x10^{-6} N*m

Explanation:

The inertia can be find using

a.

I = m*r^2

m = 0.95 g * \frac{1 kg}{1000g}=9.5x10^{-4} kg

r=0.54 cm * \frac{1m}{100cm} =5.4x10^{-3}m

I = 9.5x10^{-4}kg*(5.4x10^{-3}m)^2

I=2.77x10^{-8} kg*m^2

now to find the torsion constant can use knowing the period of the balance

b.

T=0.5 s

T=2\pi *\sqrt{\frac{I}{K}}

Solve to K'

K = \frac{4\pi^2* I}{T^2}=\frac{4\pi^2*2.7702 kg*m^2}{(0.5s)^2}

K=4.37 x10^{-6} N*m

3 0
2 years ago
A 30-km, 34.5-kV, 60-Hz, three-phase line has a positive-sequence series impedance z 5 0.19 1 j0.34 V/km. The load at the receiv
zmey [24]

Answer:

(a) With a short line, the A,B,C,D parameters are:

    A = 1pu    B = 1.685∠60.8°Ω    C = 0 S    D = 1 pu

(b) The sending-end voltage for 0.9 lagging power factor is 35.96 KV_{LL}

(c) The sending-end voltage for 0.9 leading power factor is 33.40 KV_{LL}

Explanation:

(a)

Considering the short transition line diagram.

Apply kirchoff's voltage law to the short transmission line.

Write the equation showing the relations between the sending end and the receiving end quantities.

Compare the line equations with the A,B,C,D parameter equations.

(b)

Determine the receiving-end current for 0.9 lagging power factor.

Determine the line-to-neutral receiving end voltage.

Determine the sending end voltage of the short transition line.

Determine the line-to-line sending end voltage which is the sending end voltage.

(c)

Determine the receiving-end current for 0.9 leading power factor.

Determine the sending-end voltage of the short transition line.

Determine the line-to-line sending end voltage which is the sending end voltage.

8 0
2 years ago
Other questions:
  • The formula s = 16t2 gives the distance an object falls due to gravity, where s is the distance in feet and t is the time in sec
    5·1 answer
  • For flowing water, what is the magnitude of the velocity gradient needed to produce a shear stress of 1.0 n/m2 ?
    8·2 answers
  • The electric field at a point 2.8 cm from a small object points toward the object with a strength of 180,000 N/C. What is the ob
    8·1 answer
  • In a cyclotron, the orbital radius of protons with energy 300 keV is 16.0 cm . You are redesigning the cyclotron to be used inst
    15·2 answers
  • Two ropes in a vertical plane exert equal-magnitude forces on a hanging weight but pull with an angle of 72.0° between them. Wha
    6·1 answer
  • Carry's car has a mass of 1000 kg and its brakes can apply 8000 N of force. If she is driving at 24 m/s and sees something in th
    5·1 answer
  • A jeweler is determining the optical properties of an unknown blue gemstone. She uses an angle of incidence of 62°, and measures
    7·1 answer
  • PLZZZ HELP
    14·1 answer
  • Explain whether or not there is any difference between a light ray emitted by a candle flame and one reflected off the cover of
    14·1 answer
  • What resistance must be connected in parallel with a 633-Ω resistor to produce an equivalent resistance of 205 Ω?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!